The Birkhoff weak integral of real functions with respect to a multimeasure

Anca Croitoru
"Al. I. Cuza" University,
Faculty of Mathematics,
Iaşi, Romania
Email: croitoru@uaic.ro

Alina Gavriluț
University "Alexandru Ioan Cuza", Faculty of Mathematics,
Bd. Carol I, No. 11, Iaşi, 700506, ROMANIA
Email: gavrilut@uaic.ro

Alina Iosif
Petroleum-Gas University of Ploieşti,
Department of Computer Science, Information Technology, Mathematics and Physics,
Bd. Bucureşti, No. 39, Ploieşti 100680, ROMANIA
Email: emilia.iosif@upg-ploiesti.ro

Abstract

In this paper we define and study a new Birkhoff type integral $(B w) \int_{A} f d \mu$ (called Birkhoff weak) for a real function f with respect to a set multifunction μ taking values in the family of all nonempty subsets of a real Banach space. Some classical properties are presented, such as heredity, monotonicity (relative to the function f, to the set multifunction μ and to the set A), homogeneity (with respect to f and μ) and additivity (relative to f, μ and A). Birkhoff weak integrability properties on atoms are also established.

Keywords- Birkhoff weak integral, integrable function, multimeasure, monotone set multifunction, atom.

I. Introduction

Beginning with the work of Choquet [7], the theory of setvalued integrals started to develop due to its remarkable applications in statistics, evidence theory, data mining problems, decision making theory, subjective evaluations, medicine.

Different types of set-valued integrals have been defined and studied by many authors (e.g., [1], [3], [4], [5], [6], [8], [10], [12-16], [17], [20], [21], [22-25], [26], [27], [28], [29], [30]).

The Birkhoff integral [2] was defined for a vector function $f: T \rightarrow X$ with respect to a complete finite measure $m: \mathcal{A} \rightarrow[0,+\infty)$, using series of type $\sum_{n=1}^{\infty} f\left(t_{n}\right) m\left(A_{n}\right)$ determined by a countable partition $\left\{A_{n}\right\}_{n \in \mathbb{N}^{*}}$ of T and $t_{n} \in A_{n}$, for every $n \in \mathbb{N}^{*}$. This definition was generalized (for example in [11]) for the case of a vector multifunction F and a complete finite measure $m: \mathcal{A} \rightarrow[0,+\infty)$ using series of type $\sum_{n=1}^{\infty} F\left(t_{n}\right) m\left(A_{n}\right)$.

In [18] Gould defined an integral for a vector function $f: T \rightarrow X$ relative to a complete finite measure $m: \mathcal{A} \rightarrow$ $[0,+\infty)$ using finite sums of type $\sum_{k=1}^{n} f\left(t_{k}\right) m\left(A_{k}\right)$ determined by a finite partition $\left\{A_{k}\right\}_{k=1}^{n}$ of T and $t_{k} \in A_{k}$ for every $k \in\{1,2, \ldots, n\}$.

Considering countable partitions and finite sums instead of series, in this paper we define and study a new Birkhoff type integral for real functions with respect to set multifunctions taking values in the family of all nonempty subsets of a real Banach space. This definition is more simple, easier handle
and may be placed between the Birkhoff integral and the Gould integral.

The paper is organized as follows: Section 1 is for introduction. In the second section we give some basic concepts and results. In Section 3 we define a new Birkhoff type integral $(B w) \int_{A} f d \mu$ (called Birkhoff weak) for a real function f with respect to a set multifunction μ taking values in the family of all nonempty subsets of a real Banach space. We present some classical properties of this integral, such as heredity, monotonicity (relative to the function f, to the set multifunction μ and to the set A), homogeneity (with respect to f and μ) and additivity (relative to f, μ and A). Section 4 contains some particular cases concerning Birkhoff weak integrability on atoms. The final Section 5 highlights some conclusions.

II. Preliminaries

Let be T a nonempty set, $\mathcal{P}(T)$ the family of all subsets of T and \mathbb{R}^{T} the set of all real functions defined on T. Let also be $(X,\|\cdot\|)$ a real Banach space with the metric d induced by its norm, $\mathcal{P}_{0}(X)$ the family of all nonempty subsets of $X, \mathcal{P}_{c}(X)$ the family of all nonempty convex subsets of $X, \mathcal{P}_{f}(X)$ the family of all nonempty closed subsets of X, $\mathcal{P}_{b f}(X)$ the family of all nonempty bounded closed subsets of $X, \mathcal{P}_{b f c}(X)$ the family of all nonempty bounded closed convex subsets of X and $\mathcal{P}_{k c}(X)$ the family of all nonempty compact convex subsets of X.
For every $M, N \in \mathcal{P}_{0}(X)$ and every $\alpha \in \mathbb{R}$, let $M+N=$ $\{x+y \mid x \in M, y \in N\}$ and $\alpha M=\{\alpha x \mid x \in M\}$. We denote by \bar{M} the closure of M with respect to the topology induced by the norm of X.

By " $\dot{+}$ " we mean the Minkowski addition on $\mathcal{P}_{0}(X)$, that is,

$$
M \dot{+} N=\overline{M+N}, \quad \forall M, N \in \mathcal{P}_{0}(X)
$$

Let h be the Hausdorff metric given by

$$
h(M, N)=\max \{e(M, N), e(N, M)\}, \quad \forall M, N \in \mathcal{P}_{0}(X)
$$

where $e(M, N)=\sup _{x \in M} d(x, N)$ and $d(x, N)=\inf _{y \in N} d(x, y)$.

It is well-known that $\left(\mathcal{P}_{b f}(X), h\right)$ and $\left(\mathcal{P}_{k c}(X), h\right)$ are complete metric spaces ([19]).

We denote $|M|=h(M,\{0\})$, for every $M \in \mathcal{P}_{0}(X)$, where 0 is the origin of X.

By $i=\overline{1, n}$ we mean $i \in\{1,2, \ldots, n\}$, for $n \in \mathbb{N}^{*}$, where $\mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$ and $\mathbb{N}=\{0,1,2 \ldots\}$. We also denote $\mathbb{R}_{+}=$ $[0, \infty)$. In the following proposition we recall some properties regarding the excess and the Hausdorff metric ([19]).

Proposition 1: Let $A, B, C, D, A_{i}, B_{i} \in \mathcal{P}_{0}(X)$, for every $i=\overline{1, n}$ and $n \in \mathbb{N}^{*}$. Then:
(i) $h(A, B)=h(\bar{A}, \bar{B})$.
(ii) $e(A, B)=0$ if and only if $A \subseteq \bar{B}$.
(iii) $h(A, B)=0$ if and only if $\bar{A}=\bar{B}$.
(iv) $h(\alpha A, \alpha B)=|\alpha| h(A, B), \forall \alpha \in \mathbb{R}$.
(v) $h\left(\sum_{i=1}^{n} A_{i}, \sum_{i=1}^{n} B_{i}\right) \leq \sum_{i=1}^{n} h\left(A_{i}, B_{i}\right)$.
(vi) $h(\alpha A, \beta A) \leq|\alpha-\beta| \cdot|A|, \forall \alpha, \beta \in \mathbb{R}$.
(vii) $h(\alpha A \dot{+} \beta B, \gamma A \dot{+} \delta B) \leq|\alpha-\gamma| \cdot|A|+|\beta-\delta| \cdot|B|$, $\forall \alpha, \beta, \gamma, \delta \in \mathbb{R}$.
(viii) $h(A+C, B+C)=h(A, B)$, for every $A, B \in$ $\mathcal{P}_{b f c}(X)$ and $C \in \mathcal{P}_{b}(X)$.
(ix) $\alpha(A+B)=\alpha A+\alpha B, \forall \alpha \in \mathbb{R}$.
(x) $(\alpha+\beta) A=\alpha A+\beta A$, for every $\alpha, \beta \in \mathbb{R}$, with $\alpha \beta \geq 0$ and every convex $A \in \mathcal{P}_{0}(X)$.
(xi) $\alpha A \subseteq \beta A$, for every $\alpha, \beta \in \mathbb{R}_{+}$, with $\alpha \leq \beta$ and every convex $A \in \mathcal{P}_{0}(X)$, with $\{0\} \subseteq A$.
(xii) If $X=\mathbb{R}$, then $h([a, b],[c, d])=\max \{|a-c|,|b-d|\}$, for every $a, b, c, d \in \mathbb{R}, a \leq b, c \leq d$.

In the sequel, let \mathcal{A} be a σ-algebra of subsets of T.
Definition 2: (i) A finite (countable, respectively) partition of T is a finite (countable, respectively) family of nonempty sets $P=\left\{A_{i}\right\}_{i=\overline{1, n}}\left(\left\{A_{n}\right\}_{n \in \mathbb{N}}\right.$, respectively $) \subset \mathcal{A}$ such that $A_{i} \cap A_{j}=\emptyset, i \neq j$ and $\bigcup_{i=1}^{n} A_{i}=T\left(\bigcup_{n \in \mathbb{N}} A_{n}=T\right.$, respectively).
(ii) If P and P^{\prime} are two finite (or countable) partitions of T, then P^{\prime} is said to be finer than P, denoted by $P \leq P^{\prime}$ (or, $\left.P^{\prime} \geq P\right)$, if every set of P^{\prime} is included in some set of P.
(iii) The common refinement of two finite or countable partitions $P=\left\{A_{i}\right\}$ and $P^{\prime}=\left\{B_{j}\right\}$ is the partition $P \wedge P^{\prime}=\left\{A_{i} \cap B_{j}\right\}$.

Obviously, $P \wedge P^{\prime} \geq P$ and $P \wedge P^{\prime} \geq P^{\prime}$.
We denote by \mathcal{P} the class of all partitions of T and if $A \in \mathcal{A}$ is fixed, by \mathcal{P}_{A} we denote the class of all partitions of A.

All over the paper, $\mu: \mathcal{A} \rightarrow \mathcal{P}_{0}(X)$ will be a set multifunction, with $\mu(\emptyset)=\{0\}$.

Definition 3: μ is said to be:
(i) monotone if $\mu(A) \subseteq \mu(B), \forall A, B \in \mathcal{A}$, with $A \subseteq B$.
(ii) subadditive if $\mu(A \cup B) \subseteq \mu(A)+\mu(B)$, for every $A, B \in \mathcal{A}$, with $A \cap B=\emptyset$.
(iii) a multisubmeasure if μ is monotone and subadditive.
(iv) finitely additive if $\mu(A \cup B)=\mu(A)+\mu(B)$ for every disjoint $A, B \in \mathcal{A}$.
(v) null-additive if $\mu(A \cup B)=\mu(A)$, for every $A, B \in \mathcal{A}$, with $\mu(B)=\{0\}$.
(vi) σ-null-null-additive if $\mu\left(\bigcup_{n=0}^{\infty} A_{n}\right)=\{0\}, \forall A_{n} \in \mathcal{A}$, $n \in \mathbb{N}$, with $\mu\left(A_{n}\right)=\{0\}$.

Definition 4: Let $\mu: \mathcal{A} \rightarrow \mathcal{P}_{0}(X)$ be a set-valued set function.
(i) The variation $\bar{\mu}$ of μ is the set function $\bar{\mu}: \mathcal{P}(T) \rightarrow$ $[0,+\infty]$ defined by $\bar{\mu}(E)=\sup \left\{\sum_{i=1}^{n}\left|\mu\left(A_{i}\right)\right|\right\}$, for every $E \in$ $\mathcal{P}(T)$, where the supremum is extended over all finite families of pairwise disjoint sets $\left\{A_{i}\right\}_{i=1}^{n} \subset \mathcal{A}$, with $A_{i} \subseteq E$, for every $i=\overline{1, n}$.
(ii) μ is said to be of finite variation on \mathcal{A} if $\bar{\mu}(T)<\infty$.
(iii) $\widetilde{\mu}$, defined, for every $A \subseteq T$, by

$$
\widetilde{\mu}(A)=\inf \{\bar{\mu}(B) ; A \subseteq B, B \in \mathcal{A}\}
$$

Remark 5:
I. If $E \in \mathcal{A}$, then in definition of $\bar{\mu}$ we may consider the supremum over all finite partitions $\left\{A_{i}\right\}_{i=1}^{n} \subset \mathcal{A}$, of E.
II. $|\mu(A)| \leq \bar{\mu}(A)$, for every $A \in \mathcal{A}$;
III. $\bar{\mu}$ is monotone and super-additive on $\mathcal{P}(T)$, that is $\bar{\mu}\left(\bigcup_{i \in I} A_{i}\right) \geq \sum_{i \in I} \bar{\mu}\left(A_{n}\right)$, for every finite or countable partition $\left\{A_{i}\right\}_{i \in I}$ of $\stackrel{i \in I}{T}$.
IV. If μ is finitely additive, then $\bar{\mu}$ is finitely additive.

V . If μ is a multisubmeasure, then μ is null-additive.
Remark 6: Suppose X is a Banach lattice and we denote by Λ the positive cone of X, i. e. $\Lambda=\{x \in X ; x \geq 0\}$. If $m: \mathcal{A} \rightarrow \Lambda$ is a set function, we consider the induced set multifunction (see [13]) $\mu: \mathcal{A} \rightarrow \mathcal{P}_{b f}(X)$, defined by $\mu(A)=[0, m(A)]$, for every $A \in \mathcal{A}$. Then:
I. $|\mu(A)|=\|m(A)\|, \forall A \in \mathcal{A}$;
II. $\bar{\mu}=\bar{m}$ on $\mathcal{P}(T)$;
III. $\widetilde{\mu}=\widetilde{m}$ on $\mathcal{P}(T)$;
IV. If m is monotone (σ-subadditive, σ-additive, respectively), then μ is monotone (σ-subadditive, σ-additive set-valued measure, respectively).

Definition 7: A property (P) about the points of T holds almost everywhere (denoted μ-a.e.) if there exists $A \in \mathcal{P}(T)$ so that $\widetilde{\mu}(A)=0$ and (P) holds on $T \backslash A$.

Definition 8: I. A set $A \in \mathcal{A}$ is said to be an atom of μ if $\mu(A) \supsetneq\{0\}$ and for every $B \in \mathcal{A}$, with $B \subset A$, we have $\mu(B)=\{0\}$ or $\mu(A \backslash B)=\{0\}$.
II. μ is said to be finitely (countably, respectively) purely atomic if there is a finite (countable, respectively) disjoint family $\left\{A_{i}\right\}_{i=1}^{n}\left(\left\{A_{n}\right\}_{n \in \mathbb{N}}\right.$, respectively $) \subset \mathcal{A}$ of atoms of μ so that $T=\bigcup_{i=1}^{n} A_{i}\left(T=\bigcup_{n=0}^{\infty} A_{n}\right.$, respectively $)$.

Lemma 9: Let $\mu: \mathcal{A} \rightarrow \mathcal{P}_{0}(X)$, with $\mu(\emptyset)=\{0\}$ and let $A \in \mathcal{A}$ be an atom of μ.
I. If μ is monotone and the set $B \in \mathcal{A}$ is so that $B \subseteq A$ and $\mu(B) \supsetneq\{0\}$, then B is also an atom of μ and $\mu(A \backslash B)=\{0\}$. Moreover, if μ is null-additive, then $\mu(B)=\mu(A)$.
II. If μ is monotone and null-additive, then for every finite partition $\left\{B_{i}\right\}_{i=1}^{n}$ of A, there exists only one $i_{0}=\overline{1, n}$ so that $\mu\left(B_{i_{0}}\right)=\mu(A)$ and $\mu\left(B_{i}\right)=\{0\}$ for every $i=\overline{1, n}, i \neq i_{0}$.
III. Suppose μ is monotone, null-additive and σ-null- nulladditive. Then for every countable partition $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ of A, there is an unique $n_{0} \in \mathbb{N}$ so that $\mu\left(B_{n_{0}}\right)=\mu(A)$ and $\mu\left(B_{n}\right)=\{0\}$ for every $n \in \mathbb{N}, n \neq n_{0}$.

Proof. I. Since A is an atom and $\mu(B) \neq\{0\}$, it results $\mu(A \backslash B)=\{0\}$. Let be $C \in \mathcal{A}, C \subseteq B$. Since $C \subseteq A$ and A is an atom, it follows $\mu(C)=\{0\}$ or $\mu(A \backslash C)=$ $\{0\}$. If $\mu(A \backslash C)=\{0\}$, by the monotonicity of μ, it results $\mu(B \backslash C)=\{0\}$. So, B is an atom of μ. If moreover μ is nulladditive, since $\mu(A)=\mu((A \backslash B) \cup B)$ and $\mu(A \backslash B)=\{0\}$, we obtain $\mu(B)=\mu(A)$.
II. If $\mu\left(B_{i}\right)=\{0\}$ for every $i=\overline{1, n}$, by the null-additivity of μ, it results $\mu(A)=\{0\}$, false! Then there is $i_{0}=\overline{1, n}$ such that $\mu\left(B_{i_{0}}\right) \neq\{0\}$. From I, it follows $\mu\left(B_{i_{0}}\right)=\mu(A)$ and $\mu\left(A \backslash B_{i_{0}}\right)=\{0\}$. But $B_{i} \subseteq A \backslash B_{i_{0}}$ for every $i=\overline{1, n}$, $i \neq i_{0}$ and since μ is monotone, it results $\mu\left(B_{i}\right)=\{0\}$, for every $i=\overline{1, n}, i \neq i_{0}$.
III. The proof is analogous to that of II.

In the sequel let T be a locally compact Hausdorff topological space, \mathcal{K} be the lattice of all compact subsets of T, \mathcal{B} be the Borel σ-algebra (that is the smallest σ-algebra containing $\mathcal{K})$ and τ be the class of all open sets belonging to \mathcal{B}.

In order to state our next theorems, some results of Gavriluţ [14] will be presented.

Definition 10: A set multifunction $\mu: \mathcal{B} \rightarrow \mathcal{P}_{0}(X)$ is called regular if for each set $A \in \mathcal{B}$ and each $\varepsilon>0$, there exist $K \in \mathcal{K}$ and $D \in \tau$ such that $K \subseteq A \subseteq D$ and $|\mu(D \backslash K)|<\varepsilon$.

Theorem 11: Let $\mu: \mathcal{B} \rightarrow \mathcal{P}_{f}(X)$ be regular multisubmeasure. If $A \in \mathcal{B}$ is an atom of μ, then there exists an unique point $a \in A$ such that $\mu(A)=\mu(\{a\})$.

Corollary 12: Let $\mu: \mathcal{B} \rightarrow \mathcal{P}_{f}(X)$ be a regular multisubmeasure. If $A \in \mathcal{B}$ is an atom of μ, then there exists an unique point $a \in A$ such that $\mu(A \backslash\{a\})=\{0\}$.

Remark 13: Suppose $\mu: \mathcal{B} \rightarrow \mathcal{P}_{f}(X)$ is a finitely purely atomic regular multisubmeasure. So there exists a finite family $\left\{A_{i}\right\}_{i=1}^{n} \subset \mathcal{A}$ of pairwise disjoint atoms of μ so that $T=$ $\bigcup_{i=1}^{n} A_{i}$. By Corollary 12 , there are unique $a_{1}, a_{2}, \ldots, a_{n} \in T$ $\stackrel{i=1}{\text { such that } \mu\left(A_{i} \backslash\left\{a_{i}\right\}\right)=\{0\} \text {, for every } i=\overline{1, n} \text {. Then we }}$ have
$\mu\left(T \backslash\left\{a_{1}, \ldots, a_{n}\right\}\right) \subset \mu\left(T \backslash\left\{a_{1}\right\}\right)+\ldots+\mu\left(T \backslash\left\{a_{n}\right\}\right)=\{0\}$,
which implies $\mu\left(T \backslash\left\{a_{1}, \ldots, a_{n}\right\}\right)=\{0\}$. Now, since μ is null-additive, it follows $\mu(T)=\mu\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)$.

III. BIRKHOFF WEAK INTEGRABILITY OF REAL FUNCTIONS RELATIVE TO A SET MULTIFUNCTION

In this section we define a Birkhoff type integral (named Birkhoff weak) of real functions with respect to a set multifunction and present some of its classical properties.

In the sequel, suppose $(X,\|\cdot\|)$ is a Banach space, T is infinite, \mathcal{A} is a σ-algebra of subsets of T and $\mu: \mathcal{A} \rightarrow \mathcal{P}_{0}(X)$ is a set multifunction of finite variation such that $\mu(\emptyset)=\{0\}$.

Definition 14: I. [9] Let $m: \mathcal{A} \rightarrow[0, \infty)$ be a non-negative set function. A function $f \in \mathbb{R}^{T}$ is said to be Birkhoff weak m-integrable (on T) if there exists $a \in \mathbb{R}$ having the property that for every $\varepsilon>0$, there exist a countable partition P_{ε} of T and $n_{\varepsilon} \in \mathbb{N}$ such that for every other countable partition $P=\left\{A_{n}\right\}_{n \in \mathbb{N}}$ of T, with $P \geq P_{\varepsilon}$ and every $t_{n} \in A_{n}, n \in \mathbb{N}$, it holds $\left|\sum_{k=0}^{n} f\left(t_{k}\right) m\left(A_{k}\right)-a\right|<\varepsilon$, for every $n \geq n_{\varepsilon}$.
The real a is called the Birkhoff weak m-integral of f (on T) and is denoted by $(B w) \int_{T} f d m$ or simply $\int_{T} f d m$.
II. A function $f \in \mathbb{R}^{T}$ is said to be Birkhoff weak μ-integrable on T (shortly μ-integrable) if there exists $E \in \mathcal{P}_{0}(X)$ having the property that for every $\varepsilon>0$, there exist a countable partition P_{ε} of T and $n_{\varepsilon} \in \mathbb{N}$ such that for every other countable partition $P=\left\{A_{n}\right\}_{n \in \mathbb{N}}$ of T, with $P \geq P_{\varepsilon}$ and every $t_{n} \in A_{n}, n \in \mathbb{N}$, it holds $h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(A_{k}\right), E\right)<\varepsilon$, for every $n \geq n_{\varepsilon}$.
The set \bar{E} is called the Birkhoff weak μ-integral of f on T and is denoted by $(B w) \int_{T} f d \mu$ or simply $\int_{T} f d \mu$.
f is called Birkhoff weak μ-integrable on a set $E \in \mathcal{A}$ if the restriction $f \mid E$ is Birkhoff weak μ-integrable on $\left(E, \mathcal{A}_{E}, \mu\right)$ and its integral is denoted by $(B) \int_{E} f d \mu$ or simply $\int_{E} f d \mu$.

Remark 15: If they exist, the integrals in Definition 14 are unique.

Example 16: I. Suppose $T=\left\{t_{n} \mid n \in \mathbb{N}\right\}$ is countable, $\left\{t_{n}\right\} \in \mathcal{A}$ and let be $f: T \rightarrow \mathbb{R}$ such that the series $\sum_{n=0}^{\infty} f\left(t_{n}\right) \mu\left(\left\{t_{n}\right\}\right)$ is unconditionally convergent. Then f is Birkhoff weak μ-integrable and $(B w) \int_{T} f d \mu=$ $\sum_{n=0}^{\infty} f\left(t_{n}\right) \mu\left(\left\{t_{n}\right\}\right)$.
II. Suppose $m: \mathcal{A} \rightarrow[0, \infty)$ is a non-negative set function and $\mu: \mathcal{A} \rightarrow \mathcal{P}_{k c}\left(\mathbb{R}_{+}\right)$is the set multifunction induced by m, that is $\mu(A)=[0, m(A)]$, for every $A \in \mathcal{A}$. Let $f: T \rightarrow \mathbb{R}_{+}$ be a function. Then f is Birkhoff weak μ-integrable on T if and only if f is Birkhoff weak m-integrable on T. Moreover, $(B w) \int_{T} f d \mu=\left[0,(B w) \int_{T} f d m\right]$.
This follows by Definition 14 and Proposition 1-(xii).
In the sequel we present some classical integral properties.

Theorem 17: Let $f \in \mathbb{R}^{T}$ be bounded. If $f=0 \mu$-ae, then f is μ-integrable and $\int_{T} f d \mu=\{0\}$.

Proof. Since f is bounded, there exists $M>0$ so that $|f(t)| \leq M$, for every $t \in T$.
Denoting $A=\{t \in T ; f(t) \neq 0\}$ and since $f=0 \mu$-ae, we have $\widetilde{\mu}(A)=0$. Then, for every $\varepsilon>0$, there exists $B_{\varepsilon} \in \mathcal{A}$ so that $A \subseteq B_{\varepsilon}$ and $\bar{\mu}\left(B_{\varepsilon}\right)<\varepsilon / M$. Let $P_{\varepsilon_{\infty}}=\left\{C_{i}\right\}_{i \in \mathbb{N}}$ be a partition of T, such that $C_{0}=T \backslash B_{\varepsilon}$ and $\bigcup_{i=1}^{\infty} C_{i}=B_{\varepsilon}$.
Consider now an arbitrary partition $P=\left\{D_{i}^{i=1}\right\}_{i \in \mathbb{N}}$ of T so that $P \geq P_{\varepsilon}$. Let $t_{i} \in D_{i}, i \in \mathbb{N}$ be arbitrarily chosen. Without any loss of generality, we may consider $P=P^{\prime} \cup P^{\prime \prime}, P^{\prime}=$ $\left\{D_{i}^{\prime}\right\}_{i \in \mathbb{N}}, P^{\prime \prime}=\left\{D_{i}^{\prime \prime}\right\}_{i \in \mathbb{N}}$, where $\bigcup_{i \in \mathbb{N}} D_{i}^{\prime}=C_{0}$ and $\bigcup_{i \in \mathbb{N}} D_{i}^{\prime \prime}=$ B_{ε}.
Now, for every $n \in \mathbb{N}$ it holds:

$$
\begin{aligned}
& \left|\sum_{i=0}^{n} f\left(t_{i}\right) \mu\left(D_{i}\right)\right| \leq\left|\sum_{i=0}^{n} f\left(t_{i}\right) \mu\left(D_{i}^{\prime \prime}\right)\right| \leq \\
& \quad \leq M \cdot \sum_{i=0}^{n}\left|\mu\left(D_{i}^{\prime \prime}\right)\right| \leq M \cdot \bar{\mu}\left(B_{\varepsilon}\right)<\varepsilon
\end{aligned}
$$

Hence, f is μ-integrable and $\int_{T} f d \mu=\{0\}$.
Theorem 18: [10] Let $f: T \rightarrow \mathbb{R}$ be a real function. Then f is μ-integrable on $A \in \mathcal{A}$ if and only if $f \chi_{A}$ is μ-integrable on T, where χ_{A} is the characteristic function of A.

Theorem 19: Let be $\mu: \mathcal{A} \rightarrow \mathcal{P}_{c}(X)$ and $f, g: T \rightarrow \mathbb{R}$ μ-integrable functions so that $f(t) \cdot g(t) \geq 0$, for every $t \in T$. Then $f+g$ is μ-integrable and

$$
\begin{equation*}
\int_{T}(f+g) d \mu=\int_{T} f d \mu \dot{+} \int_{T} g d \mu \tag{1}
\end{equation*}
$$

Proof. Since f is μ-integrable, then for every $\varepsilon>0$, there exist $P_{1} \in \mathcal{P}$ and $n_{\varepsilon}^{1} \in \mathbb{N}$ so that for every $P \in \mathcal{P}, P=\left\{A_{n}\right\}_{n \in \mathbb{N}}$, with $P \geq P_{1}$ and every $t_{n} \in A_{n}, n \in \mathbb{N}$, we have

$$
\begin{equation*}
h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(A_{k}\right), \int_{T} f d \mu\right)<\frac{\varepsilon}{2}, \forall n \geq n_{\varepsilon}^{1} . \tag{2}
\end{equation*}
$$

Analogously, because g is μ-integrable, there exist $P_{2} \in \mathcal{P}$ and $n_{\varepsilon}^{2} \in \mathbb{N}$ so that for every $P \in \mathcal{P}, P=\left\{B_{n}\right\}_{n \in \mathbb{N}}$, with $P \geq P_{2}$ and every $t_{n} \in B_{n}, n \in \mathbb{N}$, we have

$$
\begin{equation*}
h\left(\sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{n}\right), \int_{T} g d \mu\right)<\frac{\varepsilon}{2}, \forall n \geq n_{\varepsilon}^{2} \tag{3}
\end{equation*}
$$

Let be $P_{0}=P_{1} \wedge P_{2}$ and $n_{0}=\max \left\{n_{\varepsilon}^{1}, n_{\varepsilon}^{2}\right\}$.
Then for every partition $P=\left\{C_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}$, with $P \geq P_{0}$ and $t_{n} \in C_{n}, n \in \mathbb{N}$, by (2) and (3) we get

$$
\begin{aligned}
& h\left(\sum_{k=0}^{n}(f+g)\left(t_{k}\right) \mu\left(C_{k}\right), \int_{T} f d \mu+\int_{T} g d \mu\right)= \\
& =h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(C_{k}\right)+\sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(C_{k}\right), \int_{T} f d \mu+\int_{T} g d \mu\right) \leq \\
& \leq h\left(\sum_{k=0}^{n=0} f\left(t_{k}\right) \mu\left(C_{k}\right), \int_{T} f d \mu\right)+ \\
& +h\left(\sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(C_{k}\right), \int_{T} g d \mu\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Hence $f+g$ is μ-integrable and (1) is satisfied.
Theorem 20: If $f, g: T \rightarrow \mathbb{R}$ are μ-integrable bounded functions, then

$$
h\left(\int_{T} f d \mu, \int_{T} g d \mu\right) \leq \sup _{t \in T}|f(t)-g(t)| \cdot \bar{\mu}(T) .
$$

Proof. Since f is μ-integrable, then for every $\varepsilon>0$, there exist $P_{1} \in \mathcal{P}$ and $n_{\varepsilon}^{1} \in \mathbb{N}$ so that for every $P=\left\{A_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}$, with $P \geq P_{1}$ and $t_{n} \in A_{n}, n \in \mathbb{N}$, we have

$$
\begin{equation*}
h\left(\int_{T} f d \mu, \sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(A_{k}\right)\right)<\frac{\varepsilon}{4}, \forall n \geq n_{\varepsilon}^{1} \tag{4}
\end{equation*}
$$

Analogously, because g is μ-integrable, there exist $P_{2} \in \mathcal{P}$ and $n_{\varepsilon}^{2} \in \mathbb{N}$ such that for every $P=\left\{B_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}$, with $P \geq P_{2}$,

$$
\begin{equation*}
h\left(\int_{T} g d \mu, \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{k}\right)\right)<\frac{\varepsilon}{4}, \forall n \geq n_{\varepsilon}^{2} \tag{5}
\end{equation*}
$$

Let be $P_{1} \wedge P_{2} \in \mathcal{P}, P=\left\{C_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}$, with $P \geq P_{1} \wedge P_{2}$ and $t_{n} \in C_{n}, n \in \mathbb{N}$ arbitrarily. Consider a fixed $n \in \mathbb{N}, n \geq$ $\max \left\{n_{\varepsilon}^{1}, n_{\varepsilon}^{2}\right\}$. Then from (4) and (5) it results

$$
\begin{aligned}
& h\left(\int_{T} f d \mu, \int_{T} g d \mu\right) \leq h\left(\int_{T} f d \mu, \sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(C_{k}\right)\right)+ \\
& +h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(C_{k}\right), \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(C_{k}\right)\right)+ \\
& +h\left(\sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(C_{k}\right), \int_{T} g d \mu\right) \ll \frac{\varepsilon}{2} \\
& +h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(C_{k}\right), \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(C_{k}\right)\right) \leq \\
& \leq \frac{\varepsilon}{2}+\sum_{k=0}^{n}\left|f\left(t_{k}\right)-g\left(t_{k}\right)\right|\left|\mu\left(C_{k}\right)\right|<\frac{\varepsilon}{2} \\
& +\sup _{t \in T}|f(t)-g(t)| \cdot \bar{\mu}(T)
\end{aligned}
$$

for every $\varepsilon>0$. This implies $h\left(\int_{T} f d \mu, \int_{T} g d \mu\right) \leq$ $\sup _{t \in T}|f(t)-g(t)| \cdot \bar{\mu}(T)$.

As a consequence of the previous theorem we obtain:
Corollary 21: If $f: T \rightarrow \mathbb{R}$ is a μ-integrable bounded function, then

$$
\left|\int_{T} f d \mu\right| \leq \sup _{t \in T}|f(t)| \cdot \bar{\mu}(T)
$$

The next proposition easily follows from Definition 14-II.
Theorem 22: Let be $f: T \rightarrow \mathbb{R}$ a μ-integrable function and $\alpha \in \mathbb{R}$. Then:
I) αf is μ-integrable and

$$
\int_{T} \alpha f d \mu=\alpha \int_{T} f d \mu
$$

II) f is $\alpha \mu$-integrable and

$$
\int_{T} f d(\alpha \mu)=\alpha \int_{T} f d \mu
$$

Theorem 23: Suppose $\mu: \mathcal{A} \rightarrow \mathcal{P}_{c}(X)$ is so that 0 is in $\mu(A)$ for every A in \mathcal{A}. If $f, g: T \rightarrow \mathbb{R}_{+}$are μ-integrable functions on T so that $f \leq g$ on T, then $\int_{T} f d \mu \subseteq \int_{T} g d \mu$.
Proof. Since f is μ-integrable, for every $\varepsilon>0$, there exist $P_{1} \in \mathcal{P}$ and $n_{\varepsilon}^{1} \in \mathbb{N}$ so that for every $P=\left\{A_{n}\right\}_{n \in \mathbb{N}} \in$ $\mathcal{P}, P \geq P_{1}$ and every $t_{n} \in A_{n}, n \in \mathbb{N}$

$$
h\left(\int_{T} f d \mu, \sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(A_{k}\right)\right)<\frac{\varepsilon}{3}, \forall n \geq n_{\varepsilon}^{1} .
$$

Analogously, because g is μ-integrable, there exist $P_{2} \in \mathcal{P}$ and $n_{\varepsilon}^{2} \in \mathbb{N}$ such that for every $P=\left\{B_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}, P \geq P_{2}$ and every $t_{n} \in B_{n}, n \in \mathbb{N}$

$$
h\left(\int_{T} g d \mu, \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{k}\right)\right)<\frac{\varepsilon}{3}, \forall n \geq n_{\varepsilon}^{2}
$$

Consider $P_{0}=P_{1} \wedge P_{2}$. Let $P \in \mathcal{P}$ be arbitrarily chosen, with $P=\left\{C_{n}\right\}_{n \in \mathbb{N}} \geq P_{0}$. Then $P \geq P_{1}$ and $P \geq P_{2}$. Let be $t_{n} \in C_{n}, n \in \mathbb{N}$ and $n \geq$ $\max \left\{n_{\varepsilon}^{1}, n_{\varepsilon}^{2}\right\}$. We get that $h\left(\int_{T} f d \mu, \sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(C_{k}\right)\right)<\frac{\bar{\varepsilon}}{3}$ and $\left(\int_{T} g d \mu, \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(C_{k}\right)\right)<\frac{\varepsilon}{3}$, which imply

$$
\begin{aligned}
& e\left(\int_{T} f d \mu, \int_{T} g d \mu\right) \leq h\left(\int_{T} f d \mu, \sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(C_{k}\right)\right)+ \\
& +e\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(C_{k}\right), \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(C_{k}\right)\right)+ \\
& \left.+h\left(\sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(C_{k}\right), \int_{T} g d \mu\right)\right)< \\
& <\frac{2 \varepsilon}{3}+e\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(C_{k}\right), \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(C_{k}\right)\right)
\end{aligned}
$$

According to (xi) and (ii) of Proposition 1, it holds $e\left(\int_{T} f d \mu, \int_{T} g d \mu\right)<\frac{2 \varepsilon}{3}$, for every $\varepsilon>0$, which implies $\int_{T} f d \mu \subseteq \int_{T} g d \mu$.

Theorem 24: Let be $\mu_{1}, \mu_{2}: \mathcal{A} \rightarrow \mathcal{P}_{0}(X)$, with $\mu_{1}(\emptyset)=$ $\mu_{2}(\emptyset)=\{0\}$ and suppose $f: T \rightarrow[0,+\infty)$ is both μ_{1-} integrable and μ_{2}-integrable. If $\mu: \mathcal{A} \rightarrow \mathcal{P}_{0}(X)$ is the set multifunction defined by $\mu(A)=\mu_{1}(A)+\mu_{2}(A)$, for every $A \in \mathcal{A}$, then f is μ-integrable and

$$
\int_{T} f d\left(\mu_{1}+\mu_{2}\right)=\int_{T} f d \mu_{1} \dot{+} \int_{T} f d \mu_{2}
$$

Proof. Since f is μ_{1}-integrable, then for every $\varepsilon>0$, there exist $P_{1} \in \mathcal{P}$ and $n_{\varepsilon}^{1} \in \mathbb{N}$ so that for every $P=\left\{A_{n}\right\}_{n \in \mathbb{N}} \in$ $\mathcal{P}, P \geq P_{1}$ and $t_{n} \in A_{n}, n \in \mathbb{N}$ we have

$$
\begin{equation*}
h\left(\int_{T} f d \mu_{1}, \sum_{k=0}^{n} f\left(t_{k}\right) \mu_{1}\left(A_{k}\right)\right)<\frac{\varepsilon}{2}, \forall n \geq n_{\varepsilon}^{1} \tag{6}
\end{equation*}
$$

Since f is μ_{2}-integrable, there exist $P_{2} \in \mathcal{P}$ and $n_{\varepsilon}^{2} \in \mathbb{N}$ so that for every $P=\left\{B_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}, P \geq P_{2}$ and $t_{n} \in B_{n}, n \in \mathbb{N}$ we have

$$
\begin{equation*}
h\left(\int_{T} f d \mu_{2}, \sum_{k=0}^{n} f\left(t_{k}\right) \mu_{2}\left(B_{k}\right)\right)<\frac{\varepsilon}{2}, \forall n \geq n_{\varepsilon}^{2} \tag{7}
\end{equation*}
$$

Let be $n \geq \max \left\{n_{\varepsilon}^{1}, n_{\varepsilon}^{2}\right\}, P=\left\{C_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}, P \geq P_{1} \wedge P_{2}$ and $t_{n} \in C_{n}, n \in \mathbb{N}$.
Then, by (6) and (7), we get

$$
\begin{aligned}
& h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(C_{k}\right), \int_{T} f d \mu_{1}+\int_{T} f d \mu_{2}\right)= \\
& =h\left(\sum_{k=0}^{n} f\left(t_{k}\right)\left[\mu_{1}\left(C_{k}\right)+\mu_{2}\left(C_{k}\right)\right], \int_{T} f d \mu_{1}+\int_{T} f d \mu_{2}\right)= \\
& =h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu_{1}\left(C_{k}\right)+\sum_{k=0}^{n} f\left(t_{k}\right) \mu_{2}\left(C_{k}\right), \int_{T} f d \mu_{1}+\int_{T} f d \mu_{2}\right) \\
& \leq h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu_{1}\left(C_{k}\right), \int_{T} f d \mu_{1}\right)+ \\
& +h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu_{2}\left(C_{k}\right), \int_{T} f d \mu_{2}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

which implies that f is μ-integrable and $\int_{T} f d\left(\mu_{1}+\mu_{2}\right)=$ $\int_{T} f d \mu_{1} \dot{+} \int_{T} f d \mu_{2}$.

Theorem 25: Let be $\mu_{1}, \mu_{2}: \mathcal{A} \rightarrow \mathcal{P}_{0}(X)$ set multifunctions and $f: T \rightarrow \mathbb{R}$ a simultaneously μ_{1}-integrable and $\mu_{2^{-}}$ integrable function. If $\mu_{1}(A) \subseteq \mu_{2}(A)$, for every $A \in \mathcal{A}$, then $\int_{T} f d \mu_{1} \subseteq \int_{T} f d \mu_{2}$.

Proof. Let $\varepsilon>0$ be arbitrarily. Since f is μ_{1}-integrable, there exist $P_{1} \in \mathcal{P}$ and $n_{\varepsilon}^{1} \in \mathbb{N}$ so that for every $P=\left\{A_{n}\right\}_{n \in \mathbb{N}} \in$ $\mathcal{P}, P \geq P_{1}$ and $t_{n} \in A_{n}, n \in \mathbb{N}$

$$
h\left(\int_{T} f d \mu_{1}, \sum_{k=0}^{n} f\left(t_{k}\right) \mu_{1}\left(A_{k}\right)\right)<\frac{\varepsilon}{3}, \forall n \geq n_{\varepsilon}^{1}
$$

Analogously, since f is μ_{2}-integrable, there exist $P_{2} \in \mathcal{P}$ and $n_{\varepsilon}^{2} \in \mathbb{N}$ such that for every $P=\left\{B_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}, P \geq \mathcal{P}_{2}$ and $t_{n} \in B_{n}, n \in \mathbb{N}$

$$
h\left(\int_{T} f d \mu_{2}, \sum_{k=0}^{n} f\left(t_{k}\right) \mu_{2}\left(B_{k}\right)\right)<\frac{\varepsilon}{3}, \forall n \geq n_{\varepsilon}^{2}
$$

Let $P_{0}=P_{1} \wedge P_{2}$, and let $P \in \mathcal{P}$ be arbitrarily chosen, with $P=\left\{C_{n}\right\}_{n \in \mathbb{N}} \geq P_{0}$. Let be $t_{n} \in C_{n}, n \in \mathbb{N}$ and $n \geq \max \left\{n_{\varepsilon}^{1}, n_{\varepsilon}^{2}\right\}$.

We get that $h\left(\int_{T} f d \mu_{1}, \sum_{k=0}^{n} f\left(t_{k}\right) \mu_{1}\left(C_{k}\right)\right)<\frac{\varepsilon}{3}$ and

$$
\begin{aligned}
& h\left(\int_{T} f d \mu_{2}, \sum_{k=0}^{n} f\left(t_{k}\right) \mu_{2}\left(C_{k}\right)\right)<\frac{\varepsilon}{3}, \text { which imply } \\
& \quad e\left(\int_{T} f d \mu_{1}, \int_{T} f d \mu_{2}\right) \leq e\left(\int_{T} f d \mu_{1}, \sum_{k=0}^{n} f\left(t_{k}\right) \mu_{1}\left(C_{k}\right)\right)+ \\
& \quad+e\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu_{1}\left(C_{k}\right), \sum_{k=0}^{n} f\left(t_{k}\right) \mu_{2}\left(C_{k}\right)\right)+ \\
& \quad+e\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu_{2}\left(C_{k}\right), \int_{T} f d \mu_{2}\right)< \\
& \quad<\frac{2 \varepsilon}{3}+e\left(\sum_{k=0}^{n} f\left(\theta_{k}\right) \mu_{1}\left(C_{k}\right), \sum_{k=0}^{n} f\left(t_{k}\right) \mu_{2}\left(C_{k}\right)\right) .
\end{aligned}
$$

According to Proposition 1-(ii), we have

$$
e\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu_{1}\left(C_{k}\right), \sum_{k=0}^{n} f\left(t_{k}\right) \mu_{2}\left(C_{k}\right)\right)=0 .
$$

Consequently, $e\left(\int_{T} f d \mu_{1}, \int_{T} f d \mu_{2}\right)<\varepsilon$, for every $\varepsilon>0$, which implies the equality $e\left(\int_{T} f d \mu_{1}, \int_{T} f d \mu_{2}\right)=0$. Applying again Proposition 1-(ii), it results $\int_{T} f d \mu_{1} \subseteq \int_{T} f d \mu_{2}$.

Theorem 26: Suppose μ is finitely additive. Let $A, B \in \mathcal{A}$, with $A \cap B=\emptyset$. If $f: T \rightarrow \mathbb{R}$ is μ-integrable on A and μ-integrable on B, then f is μ-integrable on $A \cup B$, and, moreover,

$$
\int_{A \cup B} f d \mu=\int_{A} f d \mu \dot{+} \int_{B} f d \mu
$$

Proof. Let be $\varepsilon>0$. Since f is μ-integrable on A, there exist a partition $P_{A}^{\varepsilon}=\left\{C_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}_{A}$ and $n_{\varepsilon}^{1} \in \mathbb{N}$ so that for every $P=\left\{E_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}_{A}, P \geq P_{A}^{\varepsilon}$ and $t_{n} \in E_{n}, n \in \mathbb{N}$, we have

$$
h\left(\int_{A} f d \mu, \sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(E_{k}\right)\right)<\frac{\varepsilon}{2}, \forall n \geq n_{\varepsilon}^{1} .
$$

Analogously, since f is μ-integrable on B, we find a partition $P_{B}^{\varepsilon}=\left\{D_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}_{B}$ and $n_{\varepsilon}^{2} \in \mathbb{N}$ so that for every $P=\left\{E_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}_{B}$, with $P \geq P_{B}^{\varepsilon}$, and $t_{n} \in E_{n}, n \in \mathbb{N}$, we have

$$
h\left(\int_{B} f d \mu, \sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(E_{k}\right)\right)<\frac{\varepsilon}{2}, \forall n \geq n_{\varepsilon}^{2}
$$

Consider $P_{A \cup B}^{\varepsilon}=\left\{C_{n}, D_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}_{A \cup B}$ and $n \geq$ $\max \left\{n_{\varepsilon}^{1}, n_{\varepsilon}^{2}\right\}$. Let $P=\left\{E_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}_{A \cup B}$ such that $P \geq$ $P_{A \cup B}^{\varepsilon}$, then we have
$h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(E_{k}\right), \int_{A} f d \mu \dot{+} \int_{B} f d \mu\right)=$
$\left.=h\left(\sum_{k=0}^{n} f\left(t_{k}\right)\left[\mu\left(E_{k} \cap A\right)+\mu\left(E_{k} \cap B\right)\right]\right), \int_{A} f d \mu \dot{+} \int_{B} f d \mu\right)$ $\leq h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(E_{k} \cap A\right), \int_{A} f d \mu\right)+$
$+h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(E_{k} \cap B\right), \int_{B} f d \mu\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.

The proof is thus finished.
Theorem 27: Suppose μ is monotone. Let be $A, B \in \mathcal{A}$, with $A \subseteq B$. If $f: T \rightarrow \mathbb{R}$ is μ-integrable on A and μ-integrable on B, then

$$
\int_{A} f d \mu \subseteq \int_{B} f d \mu
$$

Proof. Since f is μ-integrable on A, for every $\varepsilon>0$, there exist $P_{\varepsilon}^{1}=\left\{C_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}_{A}$ and $n_{\varepsilon}^{1} \in \mathbb{N}$ so that for every $P=\left\{E_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}_{A}$, with $P \geq P_{\varepsilon}^{1}$, and $t_{n} \in E_{n}, n \in \mathbb{N}$ we have

$$
\begin{equation*}
h\left(\int_{A} f d \mu, \sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(E_{k}\right)\right)<\frac{\varepsilon}{2}, \forall n \geq n_{\varepsilon}^{1} . \tag{8}
\end{equation*}
$$

Analogously, there exist $P_{\varepsilon}^{2}=\left\{D_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}_{B}$ and $n_{\varepsilon}^{2} \in \mathbb{N}$ such that for every $P=\left\{E_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}_{B}$, with $P \geq P_{\varepsilon}^{2}$, and $t_{n} \in E_{n}, n \in \mathbb{N}$

$$
\begin{equation*}
h\left(\int_{B} f d \mu, \sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(E_{k}\right)\right)<\frac{\varepsilon}{2}, \forall n \geq n_{\varepsilon}^{2} \tag{9}
\end{equation*}
$$

We consider $\widetilde{P}_{\varepsilon}^{1}=\left\{C_{n}, B \backslash A\right\}_{n \in \mathbb{N}}$. Then $\widetilde{P}_{\varepsilon}^{1} \in \mathcal{P}_{B}$ and $\widetilde{P}_{\varepsilon}^{1} \wedge P_{\varepsilon}^{2} \in \mathcal{P}_{B}$.

Let also be an arbitrary partition $P=\left\{E_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}_{B}$, with $P \geq \widetilde{P}_{\varepsilon}^{1} \wedge P_{\varepsilon}^{2}$.

We observe that $P_{\varepsilon}^{\prime \prime}=\left\{E_{n} \cap A\right\}_{n \in \mathbb{N}}$ is also a partition of A and $P_{\varepsilon}^{\prime \prime} \geq P_{\varepsilon}^{1}$. Consider $n_{\varepsilon}=\max \left\{n_{\varepsilon}^{1}, n_{\varepsilon}^{2}\right\}$. Let $t_{n} \in$ $E_{n} \cap A, n \in \mathbb{N}$.
Then by (8) and (9), for a fixed $n \geq n_{\varepsilon}$, we have

$$
h\left(\int_{B} f d \mu, \sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(E_{k}\right)\right)<\frac{\varepsilon}{2}
$$

and

$$
h\left(\int_{A} f d \mu, \sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(E_{k} \cap A\right)\right)<\frac{\varepsilon}{2} .
$$

According to Proposition 1-(ii), we obtain

$$
\begin{aligned}
& e\left(\int_{A} f d \mu, \int_{B} f d \mu\right) \leq h\left(\int_{A} f d \mu, \sum_{k=0}^{n} f\left(t_{k}\right) m\left(E_{k} \cap A\right)\right)+ \\
& +e\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(E_{k} \cap A\right), \sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(E_{k}\right)\right)+ \\
& +h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(E_{k}\right), \int_{B} f d \mu\right) \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

for every $\varepsilon>0$. Then $\int_{A} f d \mu \subseteq \int_{B} f d \mu$, as claimed.
Theorem 28: Suppose $\mu: \mathcal{A} \rightarrow \mathcal{P}_{0}(X)$ is finitely additive.
Let $f, g: T \rightarrow \mathbb{R}$ be bounded functions so that:
(i) f is μ-integrable and
(ii) $f=g \mu$-ae.

Then g is μ-integrable and $\int_{T} f d \mu=\int_{T} g d \mu$.
Proof. Let $M=\max \left\{\sup _{t \in T}|f(t)|, \sup _{t \in T}|g(t)|\right\}$. If $M=0$, then $f=g=0$ and the conclusion is evident. Suppose $M>0$. Let $\varepsilon>0$ be arbitrarily. Since f is μ-integrable, there exist $P_{\varepsilon}=$
$\left\{A_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}$ and $n_{\varepsilon} \in \mathbb{N}$ so that for every $P=\left\{B_{n}\right\}_{n \in \mathbb{N}}$, with $P \geq P_{\varepsilon}$ and every $t_{n} \in B_{n}, n \in \mathbb{N}$

$$
\left.h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(B_{k}\right)\right), \int_{T} f d \mu\right)<\frac{\varepsilon}{2}, \forall n \geq n_{\varepsilon}
$$

Let $E \subset T$ be such that $f=g$ on $T \backslash E$ and $\widetilde{\mu}(E)=0$. By the definition of $\widetilde{\mu}$, there is $A \in \mathcal{A}$ so that $E \subseteq A$ and $\bar{\mu}(A)<\frac{\varepsilon}{4 M}$.
Consider $P_{0}=\left\{A \cap A_{n}, A_{n} \backslash A\right\}_{n \in \mathbb{N}} \in \mathcal{P}$. Let also be the arbitrary partition $P=\left\{B_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{P}$, with $P \geq P_{0}$ and $t_{n} \in B_{n}, n \in \mathbb{N}$. Then, without any loss of generality we suppose that $B_{n}=B_{n}^{\prime} \cup B_{n}^{\prime \prime}$, with $\bigcup_{n \in \mathbb{N}} B_{n}^{\prime}=A$ and $\bigcup_{n \in \mathbb{N}} B_{n}^{\prime \prime}=T \backslash A$. Considering a fixed $n \geq n_{\varepsilon}$, we prove that $h\left(\int_{T} f d \mu, \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{k}\right)\right)<\varepsilon$ (then g is μ-integrable on T and $\left.\int_{T} f d \mu=\int_{T} g d \mu\right)$.

Indeed,

$$
\begin{aligned}
& h\left(\int_{T} f d \mu, \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{k}\right)\right) \leq h\left(\int_{T} f d \mu, \sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(B_{k}\right)\right)+ \\
& +h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(B_{k}\right), \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{k}\right)\right)< \\
& <\frac{\varepsilon}{2}+h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(B_{k}\right), \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{k}\right)\right)
\end{aligned}
$$

Now, since μ is finitely additive, we get

$$
\begin{aligned}
& h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(B_{k}\right), \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{k}\right)\right)= \\
& =h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(B_{k}^{\prime}\right)+\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(B_{k}^{\prime \prime}\right)\right. \\
& \left.\sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{k}^{\prime}\right)+\sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{k}^{\prime \prime}\right)\right) \\
& \leq h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(B_{k}^{\prime}\right), \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{k}^{\prime}\right)\right)+ \\
& +h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(B_{k}^{\prime \prime}\right), \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{k}^{\prime \prime}\right)\right) \\
& \leq \sum_{k=0}^{n}\left|f\left(t_{k}\right)-g\left(t_{k}\right)\right| \mid \mu\left(B_{k}^{\prime}\left|+\sum_{k=0}^{n}\right| f\left(t_{k}\right)-g\left(t_{k}\right)| | \mu\left(B_{k}^{\prime \prime}\right) \mid\right.
\end{aligned}
$$

Therefore,
$\left.h\left(\int_{T} f d \mu, \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{k}\right)\right)<\frac{\varepsilon}{2}+\sum_{k=0}^{n}\left|f\left(t_{j}\right)-g\left(t_{j}\right)\right| \cdot \right\rvert\, \mu\left(B_{k}^{\prime} \mid\right.$ $+\sum_{k=0}^{n}\left|f\left(t_{j}\right)-g\left(t_{j}\right)\right| \cdot\left|\mu\left(B_{k}^{\prime \prime}\right)\right|$.

Since for every $k=\overline{0, n}, B_{k}^{\prime \prime} \subset T \backslash A \subset T \backslash E$ and $f=g$ on $T \backslash E$, then $f\left(t_{k}\right)=g\left(t_{k}\right)$, for every $k=\overline{0, n}$. Consequently,

$$
\begin{aligned}
& h\left(\int_{T} f d \mu, \sum_{k=0}^{n} g\left(t_{k}\right) \mu\left(B_{k}\right)\right)< \\
& <\frac{\varepsilon}{2}+\sum_{k=0}^{n}\left|f\left(t_{j}\right)-g\left(t_{j}\right)\right| \cdot\left|\mu\left(B_{k}^{\prime}\right)\right| \leq \\
& \leq \frac{\varepsilon}{2}+2 M \cdot \sum_{k=0}^{n}\left|\mu\left(B_{k}^{\prime}\right)\right| \leq \frac{\varepsilon}{2}+2 M \cdot \sum_{k=0}^{n} \bar{\mu}\left(B_{k}^{\prime}\right)= \\
& =\frac{\varepsilon}{2}+2 M \cdot \bar{\mu}\left(\bigcup_{k=0}^{n} B_{k}^{\prime}\right) \leq \frac{\varepsilon}{2}+2 M \cdot \bar{\mu}(A)< \\
& <\frac{\varepsilon}{2}+2 M \cdot \frac{\varepsilon}{4 M}=\varepsilon
\end{aligned}
$$

so the proof is finished.

IV. Birkhoff weak integrability on atoms

In this section we obtain some properties regarding Birkhoff weak integrability on atoms and on finitely purely atomic setvalued measure spaces.

In the sequel, suppose $(X,\|\cdot\|)$ is a Banach space, T is infinite, \mathcal{A} is a σ-algebra of subsets of T and $\mu: \mathcal{A} \rightarrow \mathcal{P}_{0}(X)$ is a set multifunction of finite variation such that $\mu(\emptyset)=\{0\}$.

Firstly, we present a characterization result of Birkhoff weak integrability on atoms.

Theorem 29: Suppose $\mu: \mathcal{A} \rightarrow \mathcal{P}_{0}(X)$ is a σ-null-nulladditive multisubmeasure and $A \in \mathcal{A}$ is an atom of μ. Let $f: T \rightarrow \mathbb{R}$ be a real function. Then f is Birkhoff weak μ-integrable on A if and only if there exists $E \in \mathcal{P}_{0}(X)$ having the property that for every $\varepsilon>0$ there exist a countable partition $P_{\varepsilon}=\left\{A_{n}\right\}_{n \in \mathbb{N}}$ of T and $n_{\varepsilon} \in \mathbb{N}$ such that for every $t_{n} \in A_{n}$ we have

$$
h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(A_{k}\right), E\right)<\varepsilon, \forall n \geq n_{\varepsilon}
$$

Proof. Let $P^{\prime}=\left\{B_{n}\right\}_{n \in \mathbb{N}}$ be a countable partition of A. Since A is an atom of μ, according to Lemma 9-III, we may suppose without any loss of generality that B_{1} is an atom of $\mu, \mu\left(B_{1}\right)=\mu(A)$ and $\mu\left(B_{n}\right)=\{0\}$, for every $n \geq 2$. If we consider $P=\left\{C_{n}\right\}_{n \in \mathbb{N}}$ another countable partition of A, with $P \geq P$, then, reasoning as before, we may suppose that C_{1} is an atom of $\mu, \mu\left(C_{1}\right)=\mu(A)$ and $\mu\left(C_{n}\right)=\{0\}$, for every $n \geq 2$.
Since $P \geq P^{\prime}$, we discuss two cases:
I. $C_{1} \subset B_{1}$. In this case, $\mu\left(C_{1}\right)=\mu\left(B_{1}\right)=\mu(A)$.
II. $C_{1} \subset \bigcup_{n=2}^{\infty} B_{n}$. We observe that $\mu\left(C_{1}\right) \subset \mu\left(\bigcup_{n=2}^{\infty} B_{n}\right)=\{0\}$.
(False!) (False!)

In the sequel, T is a locally compact Hausdorff topological space and \mathcal{B} is the Borel σ-algebra of T.

Theorem 30: Suppose $\mu: \mathcal{B} \rightarrow \mathcal{P}_{f}(X)$ is a regular σ -null-null-additive multisubmeasure. If $f: T \rightarrow \mathbb{R}$ is Birkhoff
μ-integrable on an atom $A \in \mathcal{B}$, then $\int_{A} f d \mu=\overline{f(a) \mu(A)}$, where $a \in A$ is the single point resulting by Theorem 11 .

Proof. Let be $\varepsilon>0$. Since f is Birkhoff μ-integrable, by Definition 14-II there exists $P_{\varepsilon}=\left\{B_{n}\right\}_{n \in \mathbb{N}}$ a countable partition of A so that for every $t_{n} \in B_{n}, n \in \mathbb{N}$, we have

$$
\begin{equation*}
h\left(\sum_{k=0}^{n} f\left(t_{k}\right) \mu\left(B_{k}\right), \int_{A} f d \mu\right)<\varepsilon . \tag{10}
\end{equation*}
$$

Suppose (by Lemma 9-III) that $\mu\left(B_{0}\right)=\mu(A)$ and $\mu\left(B_{n}\right)=$ $\{0\}$, for every $n \in \mathbb{N}^{*}$. According to Theorem 11, there is an unique a in A so that $\mu(A)=\mu(\{a\})$. Suppose $a \notin B_{0}$. Then there exists an unique $k_{0} \in \mathbb{N}^{*}$ such that $a \in B_{k_{0}}$. Since μ is monotone and $\mu\left(B_{k_{0}}\right)=\{0\}$, it follows $\mu(\{a\})=\{0\}=$ $\mu(A)$, false!

So $a \in B_{0}$. Taking $t_{0}=a$, from (10) we obtain

$$
h\left(f(a) \mu(A), \int_{A} f d \mu\right)<\varepsilon
$$

for every $\varepsilon>0$, which shows that $\int_{A} f d \mu=\overline{f(a) \mu(A)}$.
Corollary 31: Suppose $\mu: \mathcal{B} \rightarrow \mathcal{P}_{f}(X)$ is a finitely purely atomic regular σ-null-null-additive multisubmeasure, with $T=\bigcup_{i=1}^{n} A_{i}$, where $\left\{A_{i}\right\}_{i=1}^{n} \subset \mathcal{A}$ are pairwise disjoint atoms of m. If the real function $f: T \rightarrow \mathbb{R}$ is m-integrable, then $\int_{T} f d \mu=\overline{\sum_{i=1}^{n} f\left(a_{i}\right) \mu\left(A_{i}\right)}$, where $a_{i} \in A_{i}$ is the single point resulting by Theorem 11 , for every $i=\overline{1, n}$.

Corollary 32: Suppose $\mu: \mathcal{B} \rightarrow \mathcal{P}_{b f}(X)$ is a regular σ -null-null-additive multisubmeasure and let $f, f_{n}: T \rightarrow \mathbb{R}$ be m-integrable on an atom $A \in \mathcal{B}$ of μ, such that $\lim _{n \rightarrow \infty} f_{n}(a)=$ $f(a)$, where $a \in A$ is the single point resulting from Theorem 11. Then $\lim _{n \rightarrow \infty} \int_{A} f_{n} d \mu=\int_{A} f d \mu$.

V. Conclusions

In this paper we have defined a new Birkhoff type integral $(B w) \int_{A} f d \mu$ (called Birkhoff weak) for a real function f with respect to a set multifunction μ taking values in the family of all nonempty subsets of a real Banach space. Some classical properties of this integral are presented, such as heredity, monotonicity (relative to f, μ and A), homogeneity (with respect to f and μ) and additivity (by f, μ and A). Birkhoff weak integrability properties on atoms are also established.

Our future research on this integral concerns comparative results with other set-valued integrals, such as the integrals of Aumann type, Gould type or Choquet type and a RadonNikodym type theorem for Birkhoff weak integrability.

REFERENCES

[1] Aumann, R.J. - Integrals of set-valued maps, J. Math. Anal. Appl., 1965, 12,1-12.
[2] Birkhoff, G. - Integration of functions with values in a Banach space, Trans. Amer. Math. Soc. 38 (1935), no. 2, 357-378.
[3] Brooks J.K. - An integration theory for set-valued measures, I,II,Bull. Soc. R. Sci.de Liege, 1968, 37, 312-319, 375-380.
[4] Boccuto, A., Sambucini, A.R. - A note on comparison between Birkhoff and Mc Shane integrals for multifunctions, Real Analysis Exchange, 2012, Vol. 37, Issue 2, p. 3-15.
[5] Candeloro, D., Croitoru A., Gavriluţ, A., Sambucini, A.R. - An extension of the Birkhoff integrability for multifunctions, Mediterranean Journal of Mathematics, DOI: 10.1007/s00009-015-0639-7, arXiv:1507.06444 [math.FA].
[6] Candeloro, D., Di Piazza, L., Musial, K., Sambucini, A.R. - Gauge integrals and selections of weakly compact valued multifunctions, Journal of Mathematical Analysis and Applications 441 (2016), 293-308. DOI: 10.1016/j.jmaa.2016.04.009.
[7] Choquet, G. - Theory of Capacities, Ann. Inst. Fourier 5 (1953-1954), 131-296.
[8] Cascales, B., Rodriguez J. - Birkhoff integral for multi-valued functions, J. Math. Anal. Appl., 297:540-560, 2004.
[9] Croitoru, A., Gavriluţ, A., Iosif, A. - The Birkhoff weak integral of functions relative to a measure in Banach space setting, submitted for publication.
[10] Croitoru, A., Iosif, A., Mastorakis, N., Gavriluţ, A. - Fuzzy multimeasures in Birkhoff weak set-valued integrability, submitted for publication.
[11] Fernandez, A., Mayoral, F., Naranjo, F., Rodriguez, J. - On Birkhoff integrability for scalar functions and vector measures, Monatsh. Math. 157 (2009), 131-142.
[12] Gavriluţ, A. - On some properties of the Gould type integral with respect to a multisubmeasure, An. Şt. Univ. Al.I. Cuza Iaşi, 52 (2006), 177-194.
[13] Gavriluț, A. - A Gould type integral with respect to a multisubmeasure, Math. Slovaca, 58 (2008), 43-62.
[14] Gavriluţ, A. - Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions, Fuzzy Sets and Systems 160 (2009), 1308-1317.
[15] Gavriluț, A. - Fuzzy Gould integrability on atoms, Iranian Journal of Fuzzy Systems, Vol. 8, No. 3 (2011), 113-124.
[16] Gavriluţ, A. - On the regularities of fuzzy set multifunctions with applications in variation, extensions and fuzzy set-valued integrability problems, Information Sciences 224 (2013), 130-142.
[17] Godet-Tobie, C. - Multimesures et multimesures de transition, Thèse de Doctorat, Univ. des Sci. et Tech. du Languedoc, Montpellier, 1975.
[18] Gould, G.G. - On integration of vector-valued measures, Proc. London Math. Soc. 15 (1965), 193-225.
[19] Hu, S., Papageorgiou, N.S. - Handbook of Multivalued Analysis, vol. I, Kluwer Acad. Publ., Dordrecht, 1997.
[20] Kandilakis D.A.-On the extension of multimeasures and integration with respect to a multimeasure, Proc. Am. Math. Soc., 1992, 116, 85-92.
[21] Pap, E., Gavriluţ, A., Agop, M. - Atomicity via regularity for non-additive set multifunctions, Soft Computing, 2016, DOI: 10.1007/s00500-015-2021-x.
[22] Precupanu, A.M. - A Brooks type integral with respect to a multimeasure, J. Math. Sci. Univ. Tokyo, 1996, 3, 533-546.
[23] Precupanu, A., Croitoru, A. - A Gould type integral with respect to a multimeasure I/II, An. Şt. Univ. Al.I. Cuza Iaşi, 48 (2002), 165-200 / 49 (2003), 183-207.
[24] Precupanu, A., Gavriluţ, A., Croitoru, A. - A fuzzy Gould type integral, Fuzzy Sets and Systems 161 (2010), 661-680.
[25] Precupanu, A.M., Satco, B. - The Aumann-Gould integral, Mediterranean J. Math., 5 (2008), 429-441.
[26] Satco, B. - A Vitali type theorem for the set-valued Gould integral, An. Şt. Univ. Al.I. Cuza Iaşi, 51 (2005), 191-200.
[27] Sofian-Boca, F.N. - Another Gould type integral with respect to a multisubmeasure, An. Ştiinţ. Univ. "Al.I. Cuza" Iaşi, 57 (2011), 13-30.
[28] Stamate, C., Croitoru, A. - Non-linear integrals, properties and relationships, Recent Advances in Telecommunications, Signals and Systems (Proceedings of NOLASC-2013), WSEAS Press, 2013, pp. 118-123.
[29] Zhang, D., Guo, C. - Generalized fuzzy integrals of set-valued functions, Fuzzy Sets abd Systems 76 (1995), 365-373.
[30] Wu, C., Mamadou, T. - An extension of Sugeno integral, Fuzzy Sets and Systems 138 (2003), 537-550.

