The Birkhoff weak integral of real functions with respect to a multimeasure

Anca Croitoru "Al. I. Cuza" University, Faculty of Mathematics, Iaşi, Romania Email: croitoru@uaic.ro Alina Gavriluţ University "Alexandru Ioan Cuza", Faculty of Mathematics, Bd. Carol I, No. 11, Iaşi, 700506, ROMANIA Email: gavrilut@uaic.ro Alina Iosif Petroleum-Gas University of Ploieşti, Department of Computer Science, Information Technology, Mathematics and Physics, Bd. Bucureşti, No. 39, Ploieşti 100680, ROMANIA Email: emilia.iosif@upg-ploiesti.ro

Abstract—In this paper we define and study a new Birkhoff type integral $(Bw) \int_A f d\mu$ (called Birkhoff weak) for a real function f with respect to a set multifunction μ taking values in the family of all nonempty subsets of a real Banach space. Some classical properties are presented, such as heredity, monotonicity (relative to the function f, to the set multifunction μ and to the set A), homogeneity (with respect to f and μ) and additivity (relative to f, μ and A). Birkhoff weak integrability properties on atoms are also established.

Keywords- Birkhoff weak integral, integrable function, multimeasure, monotone set multifunction, atom.

I. INTRODUCTION

Beginning with the work of Choquet [7], the theory of setvalued integrals started to develop due to its remarkable applications in statistics, evidence theory, data mining problems, decision making theory, subjective evaluations, medicine.

Different types of set-valued integrals have been defined and studied by many authors (e.g., [1], [3], [4], [5], [6], [8], [10], [12-16], [17], [20], [21], [22-25], [26], [27], [28], [29], [30]).

The Birkhoff integral [2] was defined for a vector function $f: T \to X$ with respect to a complete finite measure $m: \mathcal{A} \to [0, +\infty)$, using series of type $\sum_{n=1}^{\infty} f(t_n)m(A_n)$ determined by a countable partition $\{A_n\}_{n \in \mathbb{N}^*}$ of T and $t_n \in A_n$, for every $n \in \mathbb{N}^*$. This definition was generalized (for example in [11]) for the case of a vector multifunction F and a complete finite measure $m: \mathcal{A} \to [0, +\infty)$ using series of type $\sum_{n=1}^{\infty} F(t_n)m(A_n)$.

In [18] Gould defined an integral for a vector function $f: T \to X$ relative to a complete finite measure $m: \mathcal{A} \to [0, +\infty)$ using finite sums of type $\sum_{k=1}^{n} f(t_k)m(A_k)$ determined by a finite partition $\{A_k\}_{k=1}^{n}$ of T and $t_k \in A_k$ for every $k \in \{1, 2, ..., n\}$.

Considering countable partitions and finite sums instead of series, in this paper we define and study a new Birkhoff type integral for real functions with respect to set multifunctions taking values in the family of all nonempty subsets of a real Banach space. This definition is more simple, easier handle and may be placed between the Birkhoff integral and the Gould integral.

The paper is organized as follows: Section 1 is for introduction. In the second section we give some basic concepts and results. In Section 3 we define a new Birkhoff type integral $(Bw) \int_A f d\mu$ (called Birkhoff weak) for a real function fwith respect to a set multifunction μ taking values in the family of all nonempty subsets of a real Banach space. We present some classical properties of this integral, such as heredity, monotonicity (relative to the function f, to the set multifunction μ and to the set A), homogeneity (with respect to f and μ) and additivity (relative to f, μ and A). Section 4 contains some particular cases concerning Birkhoff weak integrability on atoms. The final Section 5 highlights some conclusions.

II. PRELIMINARIES

Let be T a nonempty set, $\mathcal{P}(T)$ the family of all subsets of T and \mathbb{R}^T the set of all real functions defined on T. Let also be $(X, \|\cdot\|)$ a real Banach space with the metric dinduced by its norm, $\mathcal{P}_0(X)$ the family of all nonempty subsets of X, $\mathcal{P}_c(X)$ the family of all nonempty convex subsets of X, $\mathcal{P}_f(X)$ the family of all nonempty closed subsets of X, $\mathcal{P}_{bf}(X)$ the family of all nonempty bounded closed subsets of X, $\mathcal{P}_{bfc}(X)$ the family of all nonempty bounded closed convex subsets of X and $\mathcal{P}_{kc}(X)$ the family of all nonempty compact convex subsets of X.

For every $M, N \in \mathcal{P}_0(X)$ and every $\alpha \in \mathbb{R}$, let $M + N = \{x + y | x \in M, y \in N\}$ and $\alpha M = \{\alpha x | x \in M\}$. We denote by \overline{M} the closure of M with respect to the topology induced by the norm of X.

By " $\stackrel{\bullet}{+}$ " we mean the Minkowski addition on $\mathcal{P}_0(X)$, that is,

$$M + N = \overline{M + N}, \ \forall M, N \in \mathcal{P}_0(X).$$

Let h be the Hausdorff metric given by

$$\begin{split} h(M,N) &= \max\{e(M,N), e(N,M)\}, \ \ \forall M,N \in \mathcal{P}_0(X), \end{split}$$
 where $e(M,N) = \sup_{x \in M} d(x,N)$ and $d(x,N) = \inf_{y \in N} d(x,y).$

It is well-known that $(\mathcal{P}_{bf}(X), h)$ and $(\mathcal{P}_{kc}(X), h)$ are complete metric spaces ([19]).

We denote $|M| = h(M, \{0\})$, for every $M \in \mathcal{P}_0(X)$, where 0 is the origin of X.

By $i = \overline{1, n}$ we mean $i \in \{1, 2, \dots, n\}$, for $n \in \mathbb{N}^*$, where $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ and $\mathbb{N} = \{0, 1, 2...\}$. We also denote $\mathbb{R}_+ =$ $[0,\infty)$. In the following proposition we recall some properties regarding the excess and the Hausdorff metric ([19]).

Proposition 1: Let $A, B, C, D, A_i, B_i \in \mathcal{P}_0(X)$, for every $i = \overline{1, n}$ and $n \in \mathbb{N}^*$. Then:

(i) $h(A, B) = h(\overline{A}, \overline{B}).$

(ii) e(A, B) = 0 if and only if $A \subseteq \overline{B}$.

(iii) h(A, B) = 0 if and only if $\overline{A} = \overline{B}$.

(iv) $h(\alpha A, \alpha B) = |\alpha| h(A, B), \forall \alpha \in \mathbb{R}.$

(v) $h(\alpha A, \alpha B) = [\alpha | n(A, B), \forall a \in \mathbb{R}]$ (v) $h(\sum_{i=1}^{n} A_i, \sum_{i=1}^{n} B_i) \leq \sum_{i=1}^{n} h(A_i, B_i)$. (vi) $h(\alpha A, \beta A) \leq |\alpha - \beta| \cdot |A|, \forall \alpha, \beta \in \mathbb{R}$. (vii) $h(\alpha A + \beta B, \gamma A + \delta B) \leq |\alpha - \gamma| \cdot |A| + |\beta - \delta| \cdot |B|$, $\forall \alpha, \beta, \gamma, \delta \in \mathbb{R}.$

(viii) h(A + C, B + C) = h(A, B), for every $A, B \in$ $\mathcal{P}_{bfc}(X)$ and $C \in \mathcal{P}_b(X)$.

(ix) $\alpha(A+B) = \alpha A + \alpha B, \forall \alpha \in \mathbb{R}.$

(x) $(\alpha + \beta)A = \alpha A + \beta A$, for every $\alpha, \beta \in \mathbb{R}$, with $\alpha \beta > 0$ and every convex $A \in \mathcal{P}_0(X)$.

(xi) $\alpha A \subseteq \beta A$, for every $\alpha, \beta \in \mathbb{R}_+$, with $\alpha \leq \beta$ and every convex $A \in \mathcal{P}_0(X)$, with $\{0\} \subseteq A$.

(xii) If $X = \mathbb{R}$, then $h([a, b], [c, d]) = \max\{|a - c|, |b - d|\},\$ for every $a, b, c, d \in \mathbb{R}$, $a \leq b, c \leq d$.

In the sequel, let \mathcal{A} be a σ -algebra of subsets of T.

Definition 2: (i) A finite (countable, respectively) partition of T is a finite (countable, respectively) family of nonempty sets $P = \{A_i\}_{i=\overline{1,n}}$ $(\{A_n\}_{n\in\mathbb{N}}, \text{ respectively}) \subset \mathcal{A} \text{ such}$ that $A_i \cap A_j = \emptyset, i \neq j$ and $\bigcup_{i=1}^n A_i = T$ $(\bigcup_{n\in\mathbb{N}} A_n = T)$, respectively).

(ii) If P and P' are two finite (or countable) partitions of T, then P' is said to be *finer than* P, denoted by $P \leq P'$ (or, $P' \ge P$), if every set of P' is included in some set of P.

(iii) The common refinement of two finite or countable partitions $P = \{A_i\}$ and $P' = \{B_j\}$ is the partition $P \wedge P' = \{A_i \cap B_j\}.$

Obviously, $P \wedge P' \geq P$ and $P \wedge P' \geq P'$.

We denote by \mathcal{P} the class of all partitions of T and if $A \in \mathcal{A}$ is fixed, by \mathcal{P}_A we denote the class of all partitions of A.

All over the paper, $\mu : \mathcal{A} \to \mathcal{P}_0(X)$ will be a set multifunction, with $\mu(\emptyset) = \{0\}.$

Definition 3: μ is said to be:

(i) monotone if $\mu(A) \subseteq \mu(B), \forall A, B \in \mathcal{A}$, with $A \subseteq B$.

(ii) subadditive if $\mu(A \cup B) \subseteq \mu(A) + \mu(B)$, for every $A, B \in \mathcal{A}$, with $A \cap B = \emptyset$.

(iii) a multisubmeasure if μ is monotone and subadditive.

(iv) finitely additive if $\mu(A \cup B) = \mu(A) + \mu(B)$ for every disjoint $A, B \in \mathcal{A}$.

(v) null-additive if $\mu(A \cup B) = \mu(A)$, for every $A, B \in \mathcal{A}$, with $\mu(B) = \{0\}.$

(vi) σ -null-null-additive if $\mu(\bigcup_{n=0}^{\infty} A_n) = \{0\}, \forall A_n \in \mathcal{A}, n \in \mathbb{N}$, with $\mu(A_n) = \{0\}$.

Definition 4: Let $\mu : \mathcal{A} \to \mathcal{P}_0(X)$ be a set-valued set function.

(i) The variation $\overline{\mu}$ of μ is the set function $\overline{\mu} : \mathcal{P}(T) \to [0, +\infty]$ defined by $\overline{\mu}(E) = \sup\{\sum_{i=1}^{n} |\mu(A_i)|\}$, for every $E \in$ $\mathcal{P}(T)$, where the supremum is extended over all finite families of pairwise disjoint sets $\{A_i\}_{i=1}^n \subset \mathcal{A}$, with $A_i \subseteq E$, for every i = 1, n.

(ii) μ is said to be of finite variation on \mathcal{A} if $\overline{\mu}(T) < \infty$. (iii) $\widetilde{\mu}$, defined, for every $A \subseteq T$, by

$$\widetilde{\mu}(A) = \inf\{\overline{\mu}(B); A \subseteq B, B \in \mathcal{A}\}.$$

Remark 5:

I. If $E \in \mathcal{A}$, then in definition of $\overline{\mu}$ we may consider the supremum over all finite partitions $\{A_i\}_{i=1}^n \subset \mathcal{A}$, of E. II. $|\mu(A)| \leq \overline{\mu}(A)$, for every $A \in \mathcal{A}$;

III. $\overline{\mu}$ is monotone and super-additive on $\mathcal{P}(T)$, that is $\overline{\mu}(\bigcup_{i\in I}A_i)\geq \sum_{i\in I}\overline{\mu}(A_n),$ for every finite or countable partition $\{A_i\}_{i\in I}$ of T.

IV. If μ is finitely additive, then $\overline{\mu}$ is finitely additive. V. If μ is a multisubmeasure, then μ is null-additive.

Remark 6: Suppose X is a Banach lattice and we denote by Λ the positive cone of X, i. e. $\Lambda = \{x \in X : x \ge 0\}$. If $m : \mathcal{A} \to \Lambda$ is a set function, we consider the induced set multifunction (see [13]) $\mu : \mathcal{A} \to \mathcal{P}_{bf}(X)$, defined by $\mu(A) = [0, m(A)],$ for every $A \in \mathcal{A}$. Then: I. $|\mu(A)| = ||m(A)||, \forall A \in \mathcal{A};$

II. $\overline{\mu} = \overline{m}$ on $\mathcal{P}(T)$;

III. $\widetilde{\mu} = \widetilde{m}$ on $\mathcal{P}(T)$;

IV. If m is monotone (σ -subadditive, σ -additive, respectively), then μ is monotone (σ -subadditive, σ -additive set-valued measure, respectively).

Definition 7: A property (P) about the points of T holds almost everywhere (denoted μ -a.e.) if there exists $A \in \mathcal{P}(T)$ so that $\widetilde{\mu}(A) = 0$ and (P) holds on $T \setminus A$.

Definition 8: I. A set $A \in \mathcal{A}$ is said to be an *atom* of μ if $\mu(A) \supseteq \{0\}$ and for every $B \in \mathcal{A}$, with $B \subset A$, we have $\mu(B) = \{0\} \text{ or } \mu(A \setminus B) = \{0\}.$

II. μ is said to be *finitely (countably*, respectively) *purely* atomic if there is a finite (countable, respectively) disjoint family $\{A_i\}_{i=1}^n (\{A_n\}_{n \in \mathbb{N}}, \text{ respectively}) \subset \mathcal{A} \text{ of atoms of } \mu$ so that $T = \bigcup_{i=1}^n A_i (T = \bigcup_{n=0}^\infty A_n, \text{ respectively}).$

Lemma 9: Let $\mu : \mathcal{A} \to \mathcal{P}_0(X)$, with $\mu(\emptyset) = \{0\}$ and let $A \in \mathcal{A}$ be an atom of μ .

I. If μ is monotone and the set $B \in \mathcal{A}$ is so that $B \subseteq A$ and $\mu(B) \supseteq \{0\}$, then B is also an atom of μ and $\mu(A \setminus B) = \{0\}$. Moreover, if μ is null-additive, then $\mu(B) = \mu(A)$.

II. If μ is monotone and null-additive, then for every finite partition $\{B_i\}_{i=1}^n$ of A, there exists only one $i_0 = \overline{1, n}$ so that $\mu(B_{i_0}) = \mu(A)$ and $\mu(B_i) = \{0\}$ for every $i = \overline{1, n}, i \neq i_0$.

III. Suppose μ is monotone, null-additive and σ -null- nulladditive. Then for every countable partition $\{B_n\}_{n\in\mathbb{N}}$ of A, there is an unique $n_0 \in \mathbb{N}$ so that $\mu(B_{n_0}) = \mu(A)$ and $\mu(B_n) = \{0\}$ for every $n \in \mathbb{N}, n \neq n_0$.

Proof. I. Since A is an atom and $\mu(B) \neq \{0\}$, it results $\mu(A \setminus B) = \{0\}$. Let be $C \in \mathcal{A}, C \subseteq B$. Since $C \subseteq A$ and A is an atom, it follows $\mu(C) = \{0\}$ or $\mu(A \setminus C) =$ $\{0\}$. If $\mu(A \setminus C) = \{0\}$, by the monotonicity of μ , it results $\mu(B \setminus C) = \{0\}$. So, B is an atom of μ . If moreover μ is nulladditive, since $\mu(A) = \mu((A \setminus B) \cup B)$ and $\mu(A \setminus B) = \{0\},\$ we obtain $\mu(B) = \mu(A)$.

II. If $\mu(B_i) = \{0\}$ for every $i = \overline{1, n}$, by the null-additivity of μ , it results $\mu(A) = \{0\}$, false! Then there is $i_0 = \overline{1, n}$ such that $\mu(B_{i_0}) \neq \{0\}$. From I, it follows $\mu(B_{i_0}) = \mu(A)$ and $\mu(A \setminus B_{i_0}) = \{0\}$. But $B_i \subseteq A \setminus B_{i_0}$ for every $i = \overline{1, n}$, $i \neq i_0$ and since μ is monotone, it results $\mu(B_i) = \{0\}$, for every $i = \overline{1, n}, i \neq i_0$.

III. The proof is analogous to that of II.

In the sequel let T be a locally compact Hausdorff topological space, \mathcal{K} be the lattice of all compact subsets of T, \mathcal{B} be the Borel σ -algebra (that is the smallest σ -algebra containing \mathcal{K}) and τ be the class of all open sets belonging to \mathcal{B} .

In order to state our next theorems, some results of Gavrilut [14] will be presented.

Definition 10: A set multifunction $\mu : \mathcal{B} \to \mathcal{P}_0(X)$ is called *regular* if for each set $A \in \mathcal{B}$ and each $\varepsilon > 0$, there exist $K \in \mathcal{K}$ and $D \in \tau$ such that $K \subseteq A \subseteq D$ and $|\mu(D \setminus K)| < \varepsilon$.

Theorem 11: Let $\mu : \mathcal{B} \to \mathcal{P}_f(X)$ be regular multisubmeasure. If $A \in \mathcal{B}$ is an atom of μ , then there exists an unique point $a \in A$ such that $\mu(A) = \mu(\{a\})$.

Corollary 12: Let $\mu : \mathcal{B} \to \mathcal{P}_f(X)$ be a regular multisubmeasure. If $A \in \mathcal{B}$ is an atom of μ , then there exists an unique point $a \in A$ such that $\mu(A \setminus \{a\}) = \{0\}$.

Remark 13: Suppose $\mu : \mathcal{B} \to \mathcal{P}_f(X)$ is a finitely purely atomic regular multisubmeasure. So there exists a finite family $\{A_i\}_{i=1}^n \subset \mathcal{A}$ of pairwise disjoint atoms of μ so that $T = \bigcup_{i=1}^n A_i$. By Corollary 12, there are unique $a_1, a_2, \ldots, a_n \in T$ such that $\mu(A_i \setminus \{a_i\}) = \{0\}$, for every $i = \overline{1, n}$. Then we have

$$\mu(T \setminus \{a_1, \ldots, a_n\}) \subset \mu(T \setminus \{a_1\}) + \ldots + \mu(T \setminus \{a_n\}) = \{0\},\$$

which implies $\mu(T \setminus \{a_1, \ldots, a_n\}) = \{0\}$. Now, since μ is null-additive, it follows $\mu(T) = \mu(\{a_1, \dots, a_n\}).$

III. BIRKHOFF WEAK INTEGRABILITY OF REAL FUNCTIONS RELATIVE TO A SET MULTIFUNCTION

In this section we define a Birkhoff type integral (named Birkhoff weak) of real functions with respect to a set multifunction and present some of its classical properties.

In the sequel, suppose $(X, \|\cdot\|)$ is a Banach space, T is infinite, \mathcal{A} is a σ -algebra of subsets of T and $\mu : \mathcal{A} \to \mathcal{P}_0(X)$ is a set multifunction of finite variation such that $\mu(\emptyset) = \{0\}$.

Definition 14: I. [9] Let $m: \mathcal{A} \to [0, \infty)$ be a non-negative set function. A function $f \in \mathbb{R}^T$ is said to be *Birkhoff weak m*-integrable (on T) if there exists $a \in \mathbb{R}$ having the property that for every $\varepsilon > 0$, there exist a countable partition P_{ε} of T and $n_{\varepsilon} \in \mathbb{N}$ such that for every other countable partition $P = \{A_n\}_{n \in \mathbb{N}} \text{ of } T, \text{ with } P \ge P_{\varepsilon} \text{ and every } t_n \in A_n, n \in \mathbb{N}, \text{ it holds } |\sum_{k=0}^{n} f(t_k)m(A_k) - a| < \varepsilon, \text{ for every } n \ge n_{\varepsilon}.$ The real *a* is called *the Birkhoff weak m-integral of f (on T)*

and is denoted by $(Bw) \int_T f dm$ or simply $\int_T f dm$.

II. A function $f \in \mathbb{R}^T$ is said to be *Birkhoff weak* μ *-integrable* on T (shortly μ -integrable) if there exists $E \in \mathcal{P}_0(X)$ having the property that for every $\varepsilon > 0$, there exist a countable partition P_{ε} of T and $n_{\varepsilon} \in \mathbb{N}$ such that for every other countable partition $P = \{A_n\}_{n \in \mathbb{N}}$ of T, with $P \ge P_{\varepsilon}$ and every $t_n \in A_n, n \in \mathbb{N}$, it holds $h(\sum_{k=0}^n f(t_k)\mu(A_k), E) < \varepsilon$, for every $n \ge n_{\varepsilon}$.

The set \overline{E} is called the Birkhoff weak μ -integral of f on T and is denoted by $(Bw) \int_T f d\mu$ or simply $\int_T f d\mu$.

f is called Birkhoff weak μ -integrable on a set $E \in \mathcal{A}$ if the restriction f|E is Birkhoff weak μ -integrable on (E, \mathcal{A}_E, μ) and its integral is denoted by $(B) \int_E f d\mu$ or simply $\int_E f d\mu$.

Remark 15: If they exist, the integrals in Definition 14 are unique.

Example 16: I. Suppose $T = \{t_n | n \in \mathbb{N}\}$ is countable, $\{t_n\} \in \mathcal{A}$ and let be $f : T \rightarrow \mathbb{R}$ such that the series $\sum_{n=0}^{\infty} f(t_n)\mu(\{t_n\})$ is unconditionally convergent. Then f is Birkhoff weak μ -integrable and $(Bw)\int_T f d\mu = \sum_{n=0}^{\infty} f(t_n)\mu(\{t_n\})$.

II. Suppose $m: \mathcal{A} \to [0, \infty)$ is a non-negative set function and $\mu: \mathcal{A} \to \mathcal{P}_{kc}(\mathbb{R}_+)$ is the set multifunction induced by m, that is $\mu(A) = [0, m(A)]$, for every $A \in \mathcal{A}$. Let $f: T \to \mathbb{R}_+$ be a function. Then f is Birkhoff weak μ -integrable on T if and only if f is Birkhoff weak m-integrable on T. Moreover, $(Bw) \int_T f d\mu = [0, (Bw) \int_T f dm].$

This follows by Definition 14 and Proposition 1-(xii).

In the sequel we present some classical integral properties.

Theorem 17: Let $f \in \mathbb{R}^T$ be bounded. If f = 0 μ -ae, then f is μ -integrable and $\int_{T} f d\mu = \{0\}.$

Proof. Since f is bounded, there exists M > 0 so that $|f(t)| \leq M$, for every $t \in T$. Denoting $A = \{t \in T; f(t) \neq 0\}$ and since f = 0 μ -ae, we have $\widetilde{\mu}(A) = 0$. Then, for every $\varepsilon > 0$, there exists $B_{\varepsilon} \in \mathcal{A}$ so that $A \subseteq B_{\varepsilon}$ and $\overline{\mu}(B_{\varepsilon}) < \varepsilon/M$. Let $P_{\varepsilon} = \{C_i\}_{i \in \mathbb{N}}$ be a partition of T, such that $C_0 = T \setminus B_{\varepsilon}$ and $\bigcup_{i=1}^{\infty} C_i = B_{\varepsilon}$.

Consider now an arbitrary partition $P = \{D_i^{i=1}\}_{i \in \mathbb{N}}$ of T so that $P \geq P_{\varepsilon}$. Let $t_i \in D_i, i \in \mathbb{N}$ be arbitrarily chosen. Without any loss of generality, we may consider $P = P' \cup P''$, P' = $\{D_i^{'}\}_{i\in\mathbb{N}}, P^{\prime\prime} = \{D_i^{\prime\prime}\}_{i\in\mathbb{N}}, \text{ where } \bigcup D_i^{'} = C_0 \text{ and } \bigcup D_i^{\prime\prime} =$ B_{ε} .

Now, for every $n \in \mathbb{N}$ it holds:

$$\left|\sum_{i=0}^{n} f(t_i)\mu(D_i)\right| \le \left|\sum_{i=0}^{n} f(t_i)\mu(D_i'')\right| \le \le M \cdot \sum_{i=0}^{n} |\mu(D_i'')| \le M \cdot \overline{\mu}(B_{\varepsilon}) < \varepsilon.$$

Hence, f is μ -integrable and $\int_T f d\mu = \{0\}$. *Theorem 18: [10] Let* $f: T \to \mathbb{R}$ *be a real function. Then* f is μ -integrable on $A \in \mathcal{A}$ if and only if $f\chi_A$ is μ -integrable on T, where χ_A is the characteristic function of A.

Theorem 19: Let be $\mu : \mathcal{A} \to \mathcal{P}_c(X)$ and $f, g : T \to \mathbb{R}$ μ -integrable functions so that $f(t) \cdot g(t) \ge 0$, for every $t \in T$. Then f + q is μ -integrable and

$$\int_{T} (f+g)d\mu = \int_{T} fd\mu + \int_{T} gd\mu.$$
(1)

Proof. Since f is μ -integrable, then for every $\varepsilon > 0$, there exist $P_1 \in \mathcal{P}$ and $n_{\varepsilon}^1 \in \mathbb{N}$ so that for every $P \in \mathcal{P}, P = \{A_n\}_{n \in \mathbb{N}}$, with $P \ge P_1$ and every $t_n \in A_n, n \in \mathbb{N}$, we have

$$h\left(\sum_{k=0}^{n} f(t_k)\mu(A_k), \int_T f d\mu\right) < \frac{\varepsilon}{2}, \forall n \ge n_{\varepsilon}^1.$$
 (2)

Analogously, because g is μ -integrable, there exist $P_2 \in \mathcal{P}$ and $n_{\varepsilon}^2 \in \mathbb{N}$ so that for every $P \in \mathcal{P}, P = \{B_n\}_{n \in \mathbb{N}}$, with $P \ge P_2$ and every $t_n \in B_n, n \in \mathbb{N}$, we have

$$h\left(\sum_{k=0}^{n} g(t_k)\mu(B_n), \int_T gd\mu\right) < \frac{\varepsilon}{2}, \forall n \ge n_{\varepsilon}^2.$$
(3)

Let be $P_0 = P_1 \wedge P_2$ and $n_0 = \max\{n_{\varepsilon}^1, n_{\varepsilon}^2\}$.

Then for every partition $P = \{C_n\}_{n \in \mathbb{N}} \in \mathcal{P}$, with $P \ge P_0$ and $t_n \in C_n, n \in \mathbb{N}$, by (2) and (3) we get

$$\begin{split} h(\sum_{k=0}^{n}(f+g)(t_{k})\mu(C_{k}),\int_{T}fd\mu+\int_{T}gd\mu) &=\\ =h(\sum_{k=0}^{n}f(t_{k})\mu(C_{k})+\sum_{k=0}^{n}g(t_{k})\mu(C_{k}),\int_{T}fd\mu+\int_{T}gd\mu) \leq\\ &\leq h(\sum_{k=0}^{n}f(t_{k})\mu(C_{k}),\int_{T}fd\mu)+\\ &+h(\sum_{k=0}^{n}g(t_{k})\mu(C_{k}),\int_{T}gd\mu) < \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon. \end{split}$$

Hence f + q is μ -integrable and (1) is satisfied.

Theorem 20: If $f, g : T \to \mathbb{R}$ are μ -integrable bounded functions, then

$$h\left(\int_{T} f d\mu, \int_{T} g d\mu\right) \leq \sup_{t \in T} |f(t) - g(t)| \cdot \overline{\mu}(T).$$

Proof. Since f is μ -integrable, then for every $\varepsilon > 0$, there exist $P_1 \in \mathcal{P}$ and $n_{\varepsilon}^1 \in \mathbb{N}$ so that for every $P = \{A_n\}_{n \in \mathbb{N}} \in \mathcal{P}$, with $P \ge P_1$ and $t_n \in A_n, n \in \mathbb{N}$, we have

$$h(\int_{T} f d\mu, \sum_{k=0}^{n} f(t_{k})\mu(A_{k})) < \frac{\varepsilon}{4}, \forall n \ge n_{\varepsilon}^{1}.$$
(4)

Analogously, because g is μ -integrable, there exist $P_2 \in \mathcal{P}$ and $n_{\varepsilon}^2 \in \mathbb{N}$ such that for every $P = \{B_n\}_{n \in \mathbb{N}} \in \mathcal{P}$, with $P > P_2$

$$h(\int_{T} g d\mu, \sum_{k=0}^{n} g(t_{k})\mu(B_{k})) < \frac{\varepsilon}{4}, \forall n \ge n_{\varepsilon}^{2}.$$
 (5)

Let be $P_1 \wedge P_2 \in \mathcal{P}$, $P = \{C_n\}_{n \in \mathbb{N}} \in \mathcal{P}$, with $P \ge P_1 \wedge P_2$ and $t_n \in C_n, n \in \mathbb{N}$ arbitrarily. Consider a fixed $n \in \mathbb{N}, n \ge n$ $\max\{n_{\varepsilon}^1, n_{\varepsilon}^2\}$. Then from (4) and (5) it results

$$\begin{split} h(\int_{T} f d\mu, \int_{T} g d\mu) &\leq h(\int_{T} f d\mu, \sum_{k=0}^{n} f(t_{k})\mu(C_{k})) + \\ &+ h(\sum_{k=0}^{n} f(t_{k})\mu(C_{k}), \sum_{k=0}^{n} g(t_{k})\mu(C_{k})) + \\ &+ h(\sum_{k=0}^{n} g(t_{k})\mu(C_{k}), \int_{T} g d\mu) << \frac{\varepsilon}{2} \\ &+ h(\sum_{k=0}^{n} f(t_{k})\mu(C_{k}), \sum_{k=0}^{n} g(t_{k})\mu(C_{k})) \leq \\ &\leq \frac{\varepsilon}{2} + \sum_{k=0}^{n} |f(t_{k}) - g(t_{k})| |\mu(C_{k})| < \frac{\varepsilon}{2} \\ &+ \sup_{t \in T} |f(t) - g(t)| \cdot \overline{\mu}(T), \end{split}$$

for every $\varepsilon > 0$. This implies $h(\int_T f d\mu, \int_T g d\mu) \leq$ $\sup_{t\in T} |f(t) - g(t)| \cdot \overline{\mu}(T).$

As a consequence of the previous theorem we obtain:

Corollary 21: If $f : T \to \mathbb{R}$ is a μ -integrable bounded function, then

$$\left|\int_{T} f d\mu\right| \leq \sup_{t \in T} |f(t)| \cdot \overline{\mu}(T).$$

The next proposition easily follows from Definition 14-II.

Theorem 22: Let be $f: T \to \mathbb{R}$ *a* μ *-integrable function and* $\alpha \in \mathbb{R}$. Then:

I) αf is μ -integrable and

$$\int_T \alpha f d\mu = \alpha \int_T f d\mu;$$

II) f is $\alpha\mu$ -integrable and

$$\int_T f d(\alpha \mu) = \alpha \int_T f d\mu$$

Theorem 23: Suppose $\mu : \mathcal{A} \to \mathcal{P}_c(X)$ is so that 0 is in $\mu(A)$ for every A in \mathcal{A} . If $f, g : T \to \mathbb{R}_+$ are μ -integrable functions on T so that $f \leq g$ on T, then $\int_T f d\mu \subseteq \int_T g d\mu$.

Proof. Since f is μ -integrable, for every $\varepsilon > 0$, there exist $P_1 \in \mathcal{P}$ and $n_{\varepsilon}^1 \in \mathbb{N}$ so that for every $P = \{A_n\}_{n \in \mathbb{N}} \in \mathcal{P}, P \geq P_1$ and every $t_n \in A_n, n \in \mathbb{N}$

$$h(\int_T f d\mu, \sum_{k=0}^n f(t_k)\mu(A_k)) < \frac{\varepsilon}{3}, \forall n \ge n_{\varepsilon}^1.$$

Analogously, because g is μ -integrable, there exist $P_2 \in \mathcal{P}$ and $n_{\varepsilon}^2 \in \mathbb{N}$ such that for every $P = \{B_n\}_{n \in \mathbb{N}} \in \mathcal{P}, P \geq P_2$ and every $t_n \in B_n, n \in \mathbb{N}$

$$h(\int_T g d\mu, \sum_{k=0}^n g(t_k)\mu(B_k)) < \frac{\varepsilon}{3}, \forall n \ge n_{\varepsilon}^2$$

Consider $P_0 = P_1 \wedge P_2$. Let $P \in \mathcal{P}$ be arbitrarily chosen, with $P = \{C_n\}_{n \in \mathbb{N}} \geq P_0$. Then $P \geq P_1$ and $P \geq P_2$. Let be $t_n \in C_n$, $n \in \mathbb{N}$ and $n \geq \max\{n_{\varepsilon}^1, n_{\varepsilon}^2\}$. We get that $h(\int_T f d\mu, \sum_{k=0}^n f(t_k)\mu(C_k)) < \frac{\varepsilon}{3}$

and $\left(\int_T g d\mu, \sum_{k=0}^n g(t_k)\mu(C_k)\right) < \frac{\varepsilon}{3}$, which imply

$$\begin{split} & e(\int_{T} f d\mu, \int_{T} g d\mu) \leq h(\int_{T} f d\mu, \sum_{k=0}^{n} f(t_{k})\mu(C_{k})) + \\ & + e(\sum_{k=0}^{n} f(t_{k})\mu(C_{k}), \sum_{k=0}^{n} g(t_{k})\mu(C_{k})) + \\ & + h(\sum_{k=0}^{n} g(t_{k})\mu(C_{k}), \int_{T} g d\mu)) < \\ & < \frac{2\varepsilon}{3} + e(\sum_{k=0}^{n} f(t_{k})\mu(C_{k}), \sum_{k=0}^{n} g(t_{k})\mu(C_{k})). \end{split}$$

According to (xi) and (ii) of Proposition 1, it holds $e(\int_T f d\mu, \int_T g d\mu) < \frac{2\varepsilon}{3}$, for every $\varepsilon > 0$, which implies $\int_T f d\mu \subseteq \int_T g d\mu$.

Theorem 24: Let be $\mu_1, \mu_2 : \mathcal{A} \to \mathcal{P}_0(X)$, with $\mu_1(\emptyset) = \mu_2(\emptyset) = \{0\}$ and suppose $f : T \to [0, +\infty)$ is both μ_1 integrable and μ_2 -integrable. If $\mu : \mathcal{A} \to \mathcal{P}_0(X)$ is the set multifunction defined by $\mu(A) = \mu_1(A) + \mu_2(A)$, for every $A \in \mathcal{A}$, then f is μ -integrable and

$$\int_T f d(\mu_1 + \mu_2) = \int_T f d\mu_1 + \int_T f d\mu_2.$$

Proof. Since f is μ_1 -integrable, then for every $\varepsilon > 0$, there exist $P_1 \in \mathcal{P}$ and $n_{\varepsilon}^1 \in \mathbb{N}$ so that for every $P = \{A_n\}_{n \in \mathbb{N}} \in \mathcal{P}, P \geq P_1$ and $t_n \in A_n, n \in \mathbb{N}$ we have

$$h\left(\int_{T} f d\mu_{1}, \sum_{k=0}^{n} f(t_{k})\mu_{1}(A_{k})\right) < \frac{\varepsilon}{2}, \forall n \ge n_{\varepsilon}^{1}.$$
 (6)

Since f is μ_2 -integrable, there exist $P_2 \in \mathcal{P}$ and $n_{\varepsilon}^2 \in \mathbb{N}$ so that for every $P = \{B_n\}_{n \in \mathbb{N}} \in \mathcal{P}, P \geq P_2$ and $t_n \in B_n, n \in \mathbb{N}$ we have

$$h\left(\int_{T} f d\mu_{2}, \sum_{k=0}^{n} f(t_{k})\mu_{2}(B_{k})\right) < \frac{\varepsilon}{2}, \forall n \ge n_{\varepsilon}^{2}.$$
(7)

Let be $n \ge \max\{n_{\varepsilon}^1, n_{\varepsilon}^2\}$, $P = \{C_n\}_{n \in \mathbb{N}} \in \mathcal{P}$, $P \ge P_1 \land P_2$ and $t_n \in C_n, n \in \mathbb{N}$. Then, by (6) and (7), we get

$$\begin{split} h(\sum_{k=0}^{n} f(t_{k})\mu(C_{k}), \int_{T} fd\mu_{1} + \int_{T} fd\mu_{2}) &= \\ &= h(\sum_{k=0}^{n} f(t_{k})[\mu_{1}(C_{k}) + \mu_{2}(C_{k})], \int_{T} fd\mu_{1} + \int_{T} fd\mu_{2}) = \\ &= h(\sum_{k=0}^{n} f(t_{k})\mu_{1}(C_{k}) + \sum_{k=0}^{n} f(t_{k})\mu_{2}(C_{k}), \int_{T} fd\mu_{1} + \int_{T} fd\mu_{2}) \\ &\leq h(\sum_{k=0}^{n} f(t_{k})\mu_{1}(C_{k}), \int_{T} fd\mu_{1}) + \\ &+ h(\sum_{k=0}^{n} f(t_{k})\mu_{2}(C_{k}), \int_{T} fd\mu_{2}) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \end{split}$$

which implies that f is μ -integrable and $\int_T f d(\mu_1 + \mu_2) = \int_T f d\mu_1 + \int_T f d\mu_2$.

Theorem 25: Let be $\mu_1, \mu_2 : \mathcal{A} \to \mathcal{P}_0(X)$ set multifunctions and $f : T \to \mathbb{R}$ a simultaneously μ_1 -integrable and μ_2 integrable function. If $\mu_1(A) \subseteq \mu_2(A)$, for every $A \in \mathcal{A}$, then $\int_T f d\mu_1 \subseteq \int_T f d\mu_2$.

Proof. Let $\varepsilon > 0$ be arbitrarily. Since f is μ_1 -integrable, there exist $P_1 \in \mathcal{P}$ and $n_{\varepsilon}^1 \in \mathbb{N}$ so that for every $P = \{A_n\}_{n \in \mathbb{N}} \in \mathcal{P}, P \geq P_1$ and $t_n \in A_n, n \in \mathbb{N}$

$$h(\int_T f d\mu_1, \sum_{k=0}^n f(t_k)\mu_1(A_k)) < \frac{\varepsilon}{3}, \forall n \ge n_{\varepsilon}^1.$$

Analogously, since f is μ_2 -integrable, there exist $P_2 \in \mathcal{P}$ and $n_{\varepsilon}^2 \in \mathbb{N}$ such that for every $P = \{B_n\}_{n \in \mathbb{N}} \in \mathcal{P}, P \geq \mathcal{P}_2$ and $t_n \in B_n, n \in \mathbb{N}$

$$h(\int_T f d\mu_2, \sum_{k=0}^n f(t_k)\mu_2(B_k)) < \frac{\varepsilon}{3}, \forall n \ge n_{\varepsilon}^2.$$

Let $P_0 = P_1 \wedge P_2$, and let $P \in \mathcal{P}$ be arbitrarily chosen, with $P = \{C_n\}_{n \in \mathbb{N}} \geq P_0$. Let be $t_n \in C_n$, $n \in \mathbb{N}$ and $n \geq \max\{n_{\varepsilon}^1, n_{\varepsilon}^2\}$.

We get that
$$h(\int_T f d\mu_1, \sum_{k=0}^n f(t_k)\mu_1(C_k)) < \frac{\varepsilon}{3}$$
 and
 $h(\int_T f d\mu_2, \sum_{k=0}^n f(t_k)\mu_2(C_k)) < \frac{\varepsilon}{3}$, which imply
 $e(\int_T f d\mu_1, \int_T f d\mu_2) \le e(\int_T f d\mu_1, \sum_{k=0}^n f(t_k)\mu_1(C_k)) +$
 $+ e(\sum_{k=0}^n f(t_k)\mu_1(C_k), \sum_{k=0}^n f(t_k)\mu_2(C_k)) +$
 $+ e(\sum_{k=0}^n f(t_k)\mu_2(C_k), \int_T f d\mu_2) <$
 $< \frac{2\varepsilon}{3} + e(\sum_{k=0}^n f(\theta_k)\mu_1(C_k), \sum_{k=0}^n f(t_k)\mu_2(C_k)).$

According to Proposition 1-(ii), we have

$$e(\sum_{k=0}^{n} f(t_k)\mu_1(C_k), \sum_{k=0}^{n} f(t_k)\mu_2(C_k)) = 0.$$

Consequently, $e(\int_T f d\mu_1, \int_T f d\mu_2) < \varepsilon$, for every $\varepsilon > 0$, which implies the equality $e(\int_T f d\mu_1, \int_T f d\mu_2) = 0$. Applying again Proposition 1-(ii), it results $\int_T f d\mu_1 \subseteq \int_T f d\mu_2$. \Box

Theorem 26: Suppose μ is finitely additive. Let $A, B \in A$, with $A \cap B = \emptyset$. If $f : T \to \mathbb{R}$ is μ -integrable on A and μ -integrable on B, then f is μ -integrable on $A \cup B$, and, moreover,

$$\int_{A\cup B} fd\mu = \int_A fd\mu + \int_B fd\mu.$$

Proof. Let be $\varepsilon > 0$. Since f is μ -integrable on A, there exist a partition $P_A^{\varepsilon} = \{C_n\}_{n \in \mathbb{N}} \in \mathcal{P}_A$ and $n_{\varepsilon}^1 \in \mathbb{N}$ so that for every $P = \{E_n\}_{n \in \mathbb{N}} \in \mathcal{P}_A, P \ge P_A^{\varepsilon}$ and $t_n \in E_n, n \in \mathbb{N}$, we have

$$h(\int_A f d\mu, \sum_{k=0}^n f(t_k)\mu(E_k)) < \frac{\varepsilon}{2}, \forall n \ge n_{\varepsilon}^1.$$

Analogously, since f is μ -integrable on B, we find a partition $P_B^{\varepsilon} = \{D_n\}_{n \in \mathbb{N}} \in \mathcal{P}_B$ and $n_{\varepsilon}^2 \in \mathbb{N}$ so that for every $P = \{E_n\}_{n \in \mathbb{N}} \in \mathcal{P}_B$, with $P \ge P_B^{\varepsilon}$, and $t_n \in E_n, n \in \mathbb{N}$, we have

$$h(\int_B f d\mu, \sum_{k=0}^n f(t_k)\mu(E_k)) < \frac{\varepsilon}{2}, \forall n \ge n_{\varepsilon}^2.$$

Consider $P_{A\cup B}^{\varepsilon} = \{C_n, D_n\}_{n\in\mathbb{N}} \in \mathcal{P}_{A\cup B}$ and $n \geq \max\{n_{\varepsilon}^1, n_{\varepsilon}^2\}$. Let $P = \{E_n\}_{n\in\mathbb{N}} \in \mathcal{P}_{A\cup B}$ such that $P \geq P_{A\cup B}^{\varepsilon}$, then we have

$$\begin{split} h(\sum_{k=0}^{n} f(t_{k})\mu(E_{k}), \int_{A} fd\mu + \int_{B} fd\mu) &= \\ &= h(\sum_{k=0}^{n} f(t_{k})[\mu(E_{k} \cap A) + \mu(E_{k} \cap B)]), \int_{A} fd\mu + \int_{B} fd\mu) \\ &\leq h(\sum_{k=0}^{n} f(t_{k})\mu(E_{k} \cap A), \int_{A} fd\mu) + \\ &+ h(\sum_{k=0}^{n} f(t_{k})\mu(E_{k} \cap B), \int_{B} fd\mu) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

The proof is thus finished.

Theorem 27: Suppose μ is monotone. Let be $A, B \in A$, with $A \subseteq B$. If $f: T \to \mathbb{R}$ is μ -integrable on A and μ -integrable on B, then

$$\int_A f d\mu \subseteq \int_B f d\mu.$$

Proof. Since f is μ -integrable on A, for every $\varepsilon > 0$, there exist $P_{\varepsilon}^{1} = \{C_{n}\}_{n \in \mathbb{N}} \in \mathcal{P}_{A}$ and $n_{\varepsilon}^{1} \in \mathbb{N}$ so that for every $P = \{E_{n}\}_{n \in \mathbb{N}} \in \mathcal{P}_{A}$, with $P \ge P_{\varepsilon}^{1}$, and $t_{n} \in E_{n}, n \in \mathbb{N}$ we have

$$h(\int_{A} f d\mu, \sum_{k=0}^{n} f(t_{k})\mu(E_{k})) < \frac{\varepsilon}{2}, \forall n \ge n_{\varepsilon}^{1}.$$
 (8)

Analogously, there exist $P_{\varepsilon}^2 = \{D_n\}_{n \in \mathbb{N}} \in \mathcal{P}_B$ and $n_{\varepsilon}^2 \in \mathbb{N}$ such that for every $P = \{E_n\}_{n \in \mathbb{N}} \in \mathcal{P}_B$, with $P \ge P_{\varepsilon}^2$, and $t_n \in E_n, n \in \mathbb{N}$

$$h(\int_{B} f d\mu, \sum_{k=0}^{n} f(t_{k})\mu(E_{k})) < \frac{\varepsilon}{2}, \forall n \ge n_{\varepsilon}^{2}.$$
 (9)

We consider $\widetilde{P}^1_{\varepsilon} = \{C_n, B \setminus A\}_{n \in \mathbb{N}}$. Then $\widetilde{P}^1_{\varepsilon} \in \mathcal{P}_B$ and $\widetilde{P}^1_{\varepsilon} \wedge P^2_{\varepsilon} \in \mathcal{P}_B$.

Let also be an arbitrary partition $P = \{E_n\}_{n \in \mathbb{N}} \in \mathcal{P}_B$, with $P \ge \widetilde{P}_{\varepsilon}^1 \land P_{\varepsilon}^2$.

We observe that $P_{\varepsilon}'' = \{E_n \cap A\}_{n \in \mathbb{N}}$ is also a partition of A and $P_{\varepsilon}'' \ge P_{\varepsilon}^1$. Consider $n_{\varepsilon} = \max\{n_{\varepsilon}^1, n_{\varepsilon}^2\}$. Let $t_n \in E_n \cap A, n \in \mathbb{N}$.

Then by (8) and (9), for a fixed $n \ge n_{\varepsilon}$, we have

$$h(\int_B f d\mu, \sum_{k=0}^n f(t_k)\mu(E_k)) < \frac{\varepsilon}{2}$$

and

$$h(\int_A f d\mu, \sum_{k=0}^n f(t_k)\mu(E_k \cap A)) < \frac{\varepsilon}{2}.$$

According to Proposition 1-(ii), we obtain

$$\begin{split} e(\int_{A} f d\mu, \int_{B} f d\mu) &\leq h(\int_{A} f d\mu, \sum_{k=0}^{n} f(t_{k}) m(E_{k} \cap A)) + \\ + e(\sum_{k=0}^{n} f(t_{k}) \mu(E_{k} \cap A), \sum_{k=0}^{n} f(t_{k}) \mu(E_{k})) + \\ + h(\sum_{k=0}^{n} f(t_{k}) \mu(E_{k}), \int_{B} f d\mu) &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \end{split}$$

for every $\varepsilon > 0$. Then $\int_A f d\mu \subseteq \int_B f d\mu$, as claimed. \Box

Theorem 28: Suppose $\mu : \mathcal{A} \to \mathcal{P}_0(X)$ is finitely additive. Let $f, g: T \to \mathbb{R}$ be bounded functions so that:

(i) f is μ -integrable and

(ii) $f = g \mu$ -ae.

Then g is μ -integrable and $\int_T f d\mu = \int_T g d\mu$.

Proof. Let $M = \max\{\sup_{t \in T} |f(t)|, \sup_{t \in T} |g(t)|\}$. If M = 0, then f = g = 0 and the conclusion is evident. Suppose M > 0. Let $\varepsilon > 0$ be arbitrarily. Since f is μ -integrable, there exist $P_{\varepsilon} =$

 $\{A_n\}_{n\in\mathbb{N}}\in\mathcal{P} \text{ and } n_{\varepsilon}\in\mathbb{N} \text{ so that for every } P=\{B_n\}_{n\in\mathbb{N}}, \\ \text{with } P\geq P_{\varepsilon} \text{ and every } t_n\in B_n, n\in\mathbb{N}$

$$h(\sum_{k=0}^{n} f(t_k)\mu(B_k)), \int_{T} fd\mu) < \frac{\varepsilon}{2}, \forall n \ge n_{\varepsilon}.$$

Let $E \subset T$ be such that f = g on $T \setminus E$ and $\tilde{\mu}(E) = 0$. By the definition of $\tilde{\mu}$, there is $A \in \mathcal{A}$ so that $E \subseteq A$ and $\overline{\mu}(A) < \frac{\varepsilon}{4M}$.

Consider $P_0 = \{A \cap A_n, A_n \setminus A\}_{n \in \mathbb{N}} \in \mathcal{P}$. Let also be the arbitrary partition $P = \{B_n\}_{n \in \mathbb{N}} \in \mathcal{P}$, with $P \ge P_0$ and $t_n \in B_n, n \in \mathbb{N}$. Then, without any loss of generality we suppose that $B_n = B'_n \cup B''_n$, with $\bigcup_{n \in \mathbb{N}} B'_n = A$ and $\bigcup_{n \in \mathbb{N}} B''_n = T \setminus A$. Considering a fixed $n \ge n_{\varepsilon}$, we prove that $h(\int_{T} f d\mu, \sum_{n=1}^{n} g(t_k)\mu(B_k)) < \varepsilon$ (then g is μ -integrable on T

$$\begin{split} h(\int_T f d\mu, \sum_{k=0}^n g(t_k) \mu(B_k)) &< \varepsilon \text{ (then } g \text{ is } \mu\text{-integrable on } T \\ \text{and } \int_T f d\mu &= \int_T g d\mu \text{)}. \end{split}$$

Indeed,

$$\begin{split} h(\int_{T} f d\mu, \sum_{k=0}^{n} g(t_{k})\mu(B_{k})) &\leq h(\int_{T} f d\mu, \sum_{k=0}^{n} f(t_{k})\mu(B_{k})) + \\ &+ h(\sum_{k=0}^{n} f(t_{k})\mu(B_{k}), \sum_{k=0}^{n} g(t_{k})\mu(B_{k})) < \\ &< \frac{\varepsilon}{2} + h(\sum_{k=0}^{n} f(t_{k})\mu(B_{k}), \sum_{k=0}^{n} g(t_{k})\mu(B_{k})). \end{split}$$

Now, since μ is finitely additive, we get

$$\begin{split} h(\sum_{k=0}^{n} f(t_{k})\mu(B_{k}), \sum_{k=0}^{n} g(t_{k})\mu(B_{k})) &= \\ &= h(\sum_{k=0}^{n} f(t_{k})\mu(B_{k}^{'}) + \sum_{k=0}^{n} f(t_{k})\mu(B_{k}^{''}), \\ \sum_{k=0}^{n} g(t_{k})\mu(B_{k}^{'}) + \sum_{k=0}^{n} g(t_{k})\mu(B_{k}^{''})) \\ &\leq h(\sum_{k=0}^{n} f(t_{k})\mu(B_{k}^{'}), \sum_{k=0}^{n} g(t_{k})\mu(B_{k}^{'})) + \\ &+ h(\sum_{k=0}^{n} f(t_{k})\mu(B_{k}^{''}), \sum_{k=0}^{n} g(t_{k})\mu(B_{k}^{''})) \\ &\leq \sum_{k=0}^{n} |f(t_{k}) - g(t_{k})| |\mu(B_{k}^{'}| + \sum_{k=0}^{n} |f(t_{k}) - g(t_{k})| |\mu(B_{k}^{''})|. \end{split}$$

Therefore,

$$\begin{split} h(\int_{T} f d\mu, \sum_{k=0}^{n} g(t_{k})\mu(B_{k})) &< \frac{\varepsilon}{2} + \sum_{k=0}^{n} |f(t_{j}) - g(t_{j})| \cdot |\mu(B_{k}^{'}| \\ &+ \sum_{k=0}^{n} |f(t_{j}) - g(t_{j})| \cdot |\mu(B_{k}^{''})|. \end{split}$$

Since for every $k = \overline{0, n}$, $B_k'' \subset T \setminus A \subset T \setminus E$ and f = g on $T \setminus E$, then $f(t_k) = g(t_k)$, for every $k = \overline{0, n}$. Consequently,

$$h(\int_{T} f d\mu, \sum_{k=0}^{n} g(t_{k})\mu(B_{k})) <$$

$$< \frac{\varepsilon}{2} + \sum_{k=0}^{n} |f(t_{j}) - g(t_{j})| \cdot |\mu(B_{k}^{'})| \leq$$

$$\leq \frac{\varepsilon}{2} + 2M \cdot \sum_{k=0}^{n} |\mu(B_{k}^{'})| \leq \frac{\varepsilon}{2} + 2M \cdot \sum_{k=0}^{n} \overline{\mu}(B_{k}^{'}) =$$

$$= \frac{\varepsilon}{2} + 2M \cdot \overline{\mu}(\bigcup_{k=0}^{n} B_{k}^{'}) \leq \frac{\varepsilon}{2} + 2M \cdot \overline{\mu}(A) <$$

$$< \frac{\varepsilon}{2} + 2M \cdot \frac{\varepsilon}{4M} = \varepsilon,$$

so the proof is finished.

 n_{\cdot}

IV. BIRKHOFF WEAK INTEGRABILITY ON ATOMS

In this section we obtain some properties regarding Birkhoff weak integrability on atoms and on finitely purely atomic setvalued measure spaces.

In the sequel, suppose $(X, \|\cdot\|)$ is a Banach space, T is infinite, \mathcal{A} is a σ -algebra of subsets of T and $\mu : \mathcal{A} \to \mathcal{P}_0(X)$ is a set multifunction of finite variation such that $\mu(\emptyset) = \{0\}$.

Firstly, we present a characterization result of Birkhoff weak integrability on atoms.

Theorem 29: Suppose $\mu : \mathcal{A} \to \mathcal{P}_0(X)$ is a σ -null-nulladditive multisubmeasure and $A \in \mathcal{A}$ is an atom of μ . Let $f : T \to \mathbb{R}$ be a real function. Then f is Birkhoff weak μ -integrable on A if and only if there exists $E \in \mathcal{P}_0(X)$ having the property that for every $\varepsilon > 0$ there exist a countable partition $P_{\varepsilon} = \{A_n\}_{n \in \mathbb{N}}$ of T and $n_{\varepsilon} \in \mathbb{N}$ such that for every $t_n \in A_n$ we have

$$h(\sum_{k=0}^{n} f(t_k)\mu(A_k), E) < \varepsilon, \forall n \ge n_{\varepsilon}.$$

Proof. Let $P' = \{B_n\}_{n \in \mathbb{N}}$ be a countable partition of A. Since A is an atom of μ , according to Lemma 9-III, we may suppose without any loss of generality that B_1 is an atom of μ , $\mu(B_1) = \mu(A)$ and $\mu(B_n) = \{0\}$, for every $n \ge 2$. If we consider $P = \{C_n\}_{n \in \mathbb{N}}$ another countable partition of A, with $P \ge P$, then, reasoning as before, we may suppose that C_1 is an atom of μ , $\mu(C_1) = \mu(A)$ and $\mu(C_n) = \{0\}$, for every $n \ge 2$.

Since $P \ge P'$, we discuss two cases: I. $C_1 \subset B_1$. In this case, $\mu(C_1) = \mu(B_1) = \mu(A)$. II. $C_1 \subset \bigcup_{n=2}^{\infty} B_n$. We observe that $\mu(C_1) \subset \mu(\bigcup_{n=2}^{\infty} B_n) = \{0\}$. (False!)

In the sequel, T is a locally compact Hausdorff topological space and \mathcal{B} is the Borel σ -algebra of T.

Theorem 30: Suppose $\mu : \mathcal{B} \to \mathcal{P}_f(X)$ is a regular σ -null-null-additive multisubmeasure. If $f : T \to \mathbb{R}$ is Birkhoff

 μ -integrable on an atom $A \in \mathcal{B}$, then $\int_A f d\mu = \overline{f(a)\mu(A)}$, where $a \in A$ is the single point resulting by Theorem 11.

Proof. Let be $\varepsilon > 0$. Since f is Birkhoff μ -integrable, by Definition 14-II there exists $P_{\varepsilon} = \{B_n\}_{n \in \mathbb{N}}$ a countable partition of A so that for every $t_n \in B_n$, $n \in \mathbb{N}$, we have

$$h(\sum_{k=0}^{n} f(t_k)\mu(B_k), \int_A f d\mu) < \varepsilon.$$
(10)

Suppose (by Lemma 9-III) that $\mu(B_0) = \mu(A)$ and $\mu(B_n) = \{0\}$, for every $n \in \mathbb{N}^*$. According to Theorem 11, there is an unique a in A so that $\mu(A) = \mu(\{a\})$. Suppose $a \notin B_0$. Then there exists an unique $k_0 \in \mathbb{N}^*$ such that $a \in B_{k_0}$. Since μ is monotone and $\mu(B_{k_0}) = \{0\}$, it follows $\mu(\{a\}) = \{0\} = \mu(A)$, false!

So $a \in B_0$. Taking $t_0 = a$, from (10) we obtain

$$h(f(a)\mu(A), \int_A f d\mu) < \varepsilon,$$

for every $\varepsilon > 0$, which shows that $\int_A f d\mu = \overline{f(a)\mu(A)}$. \Box

Corollary 31: Suppose $\mu : \mathcal{B} \to \mathcal{P}_f(X)$ is a finitely purely atomic regular σ -null-null-additive multisubmeasure, with $T = \bigcup_{i=1}^{n} A_i$, where $\{A_i\}_{i=1}^{n} \subset \mathcal{A}$ are pairwise disjoint atoms of m. If the real function $f: T \to \mathbb{R}$ is m-integrable, then $\int_T f d\mu = \sum_{i=1}^{n} f(a_i)\mu(A_i)$, where $a_i \in A_i$ is the single point resulting by Theorem 11, for every $i = \overline{1, n}$.

Corollary 32: Suppose $\mu : \mathcal{B} \to \mathcal{P}_{bf}(X)$ is a regular σ null-null-additive multisubmeasure and let $f, f_n : T \to \mathbb{R}$ be m-integrable on an atom $A \in \mathcal{B}$ of μ , such that $\lim_{n \to \infty} f_n(a) = f(a)$, where $a \in A$ is the single point resulting from Theorem 11. Then $\lim_{n \to \infty} \int_A f_n d\mu = \int_A f d\mu$.

V. CONCLUSIONS

In this paper we have defined a new Birkhoff type integral $(Bw) \int_A f d\mu$ (called Birkhoff weak) for a real function f with respect to a set multifunction μ taking values in the family of all nonempty subsets of a real Banach space. Some classical properties of this integral are presented, such as heredity, monotonicity (relative to f, μ and A), homogeneity (with respect to f and μ) and additivity (by f, μ and A). Birkhoff weak integrability properties on atoms are also established.

Our future research on this integral concerns comparative results with other set-valued integrals, such as the integrals of Aumann type, Gould type or Choquet type and a Radon-Nikodym type theorem for Birkhoff weak integrability.

REFERENCES

- [1] Aumann, R.J. Integrals of set-valued maps, J. Math. Anal. Appl., 1965, 12,1-12.
- [2] Birkhoff, G. Integration of functions with values in a Banach space, Trans. Amer. Math. Soc. 38 (1935), no. 2, 357-378.
- [3] Brooks J.K. An integration theory for set-valued measures, I,II,Bull. Soc. R. Sci.de Liege, 1968, 37, 312-319, 375-380.
- [4] Boccuto, A., Sambucini, A.R. A note on comparison between Birkhoff and Mc Shane integrals for multifunctions, Real Analysis Exchange, 2012, Vol. 37, Issue 2, p. 3-15.

- [5] Candeloro, D., Croitoru A., Gavriluţ, A., Sambucini, A.R. An extension of the Birkhoff integrability for multifunctions, Mediterranean Journal of Mathematics, DOI: 10.1007/s00009-015-0639-7, arXiv:1507.06444 [math.FA].
- [6] Candeloro, D., Di Piazza, L., Musial, K., Sambucini, A.R. Gauge integrals and selections of weakly compact valued multifunctions, Journal of Mathematical Analysis and Applications 441 (2016), 293-308. DOI: 10.1016/j.jmaa.2016.04.009.
- [7] Choquet, G. Theory of Capacities, Ann. Inst. Fourier 5 (1953-1954), 131-296.
- [8] Cascales, B., Rodriguez J. Birkhoff integral for multi-valued functions, J. Math. Anal. Appl., 297:540-560, 2004.
- [9] Croitoru, A., Gavriluţ, A., Iosif, A. The Birkhoff weak integral of functions relative to a measure in Banach space setting, submitted for publication.
- [10] Croitoru, A., Iosif, A., Mastorakis, N., Gavriluţ, A. Fuzzy multimeasures in Birkhoff weak set-valued integrability, submitted for publication.
- [11] Fernandez, A., Mayoral, F., Naranjo, F., Rodriguez, J. On Birkhoff integrability for scalar functions and vector measures, Monatsh. Math. 157 (2009), 131-142.
- [12] Gavriluţ, A. On some properties of the Gould type integral with respect to a multisubmeasure, An. Şt. Univ. Al.I. Cuza Iaşi, 52 (2006), 177-194.
- [13] Gavriluţ, A. A Gould type integral with respect to a multisubmeasure, Math. Slovaca, 58 (2008), 43-62.
- [14] Gavriluţ, A. Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions, Fuzzy Sets and Systems 160 (2009), 1308-1317.
- [15] Gavriluţ, A. Fuzzy Gould integrability on atoms, Iranian Journal of Fuzzy Systems, Vol. 8, No. 3 (2011), 113-124.
- [16] Gavriluţ, A. On the regularities of fuzzy set multifunctions with applications in variation, extensions and fuzzy set-valued integrability problems, Information Sciences 224 (2013), 130-142.
- [17] Godet-Tobie, C. Multimesures et multimesures de transition, Thèse de Doctorat, Univ. des Sci. et Tech. du Languedoc, Montpellier, 1975.
- [18] Gould, G.G. On integration of vector-valued measures, Proc. London Math. Soc. 15 (1965), 193-225.
- [19] Hu, S., Papageorgiou, N.S. Handbook of Multivalued Analysis, vol. I, Kluwer Acad. Publ., Dordrecht, 1997.
- [20] Kandilakis D.A.-On the extension of multimeasures and integration with respect to a multimeasure, Proc. Am. Math. Soc., 1992, 116, 85-92.
- [21] Pap, E., Gavriluţ, A., Agop, M. Atomicity via regularity for non-additive set multifunctions, Soft Computing, 2016, DOI: 10.1007/s00500-015-2021-x.
- [22] Precupanu, A.M. A Brooks type integral with respect to a multimeasure, J. Math. Sci. Univ. Tokyo, 1996, 3, 533-546.
- [23] Precupanu, A., Croitoru, A. A Gould type integral with respect to a multimeasure I/II, An. Şt. Univ. Al.I. Cuza Iaşi, 48 (2002), 165-200 / 49 (2003), 183-207.
- [24] Precupanu, A., Gavriluţ, A., Croitoru, A. A fuzzy Gould type integral, Fuzzy Sets and Systems 161 (2010), 661-680.
- [25] Precupanu, A.M., Satco, B. *The Aumann-Gould integral*, Mediterranean J. Math., 5 (2008), 429–441.
- [26] Satco, B. A Vitali type theorem for the set-valued Gould integral, An. Şt. Univ. Al.I. Cuza Iaşi, 51 (2005), 191-200.
- [27] Šofian-Boca, F.N. Another Gould type integral with respect to a multisubmeasure, An. Ştiinţ. Univ. "Al.I. Cuza" Iaşi, 57 (2011), 13-30.
- [28] Stamate, C., Croitoru, A. Non-linear integrals, properties and relationships, Recent Advances in Telecommunications, Signals and Systems (Proceedings of NOLASC-2013), WSEAS Press, 2013, pp. 118-123.
- [29] Zhang, D., Guo, C. Generalized fuzzy integrals of set-valued functions, Fuzzy Sets abd Systems 76 (1995), 365-373.
- [30] Wu, C., Mamadou, T. An extension of Sugeno integral, Fuzzy Sets and Systems 138 (2003), 537-550.